摘要
提出了一种基于图像分块并行处理的快速的红外图像增强的方法。在对图像进行分块并行处理的基础上,综合利用改进的中值滤波算法、快速Sobel边缘检测算法、自适应权值的加权平均图像融合算法对红外图像进行快速处理。改进的中值滤波算法效果好于MTM算法,自适应权值的加权平均图像融合算法比基于区域对比度的权值选择法更好地抑制噪声,对图像进行分块并行处理,提高了图像处理的速度。实验结果表明,提出的方法能够快速优质地对红外图像进行增强。
A fast infrared image enhancement method based on parallel processing of sub-block image is presented.Based on parallel processing of sub-block image,Four algorithms are synthetically used to process infrared image quickly,which include the improved me-dian filtering algorithm,the quick Sobel edge detection algorithm,the independent weighted average image fusion algorithm.The im-proved median filtering algorithm is better than MTM;the independent weighted average image fusion algorithm that can adjust weight independently,whose antinoise ability is better than the weights selection algorithm which is based on contrast ratio of region.The new method that process parallel sub-block images,after dividing image to sub-block images,that is quicker than common methods.All in all,speed and result of this fast infrared image enhancement method are perfect.
出处
《计算机工程与设计》
CSCD
北大核心
2011年第3期1002-1005,共4页
Computer Engineering and Design
基金
南京航空航天大学基本科研业务费专项科研基金项目(NS2010214)