期刊文献+

使用伪氨基酸组成和BP神经网络预测类弹性蛋白多肽的相变温度

Using Pseudo-Amino Acid Composition and BP Neural Network to Predict the Transition Temperature of Elastin-Like Peptides
下载PDF
导出
摘要 根据获得的16条ELP序列及相变温度的数据,利用伪氨基酸组成方法提取其序列特征值.将伪氨基酸组成中的相关系数部分作为类弹性蛋白的特征向量,从类弹性蛋白序列出发,利用最小中位方差回归,找出与其序列相关系数的最佳阶数.运用均匀设计法,分别对支持向量机与BP神经网络参数进行优化.结果表明:BP神经网络获得的预测模型最佳,相变温度绝对误差为0.39℃,均方根误差为0.89℃. Elastin-like peptides(ELP) is one of the multi-peptides which has been widely used.Transition temperature is the most convenient parameters for quantificational description of the ELP properties.It is of great importance to explore the relationship between the transition temperature and the sequence characteristics,the number of Xaa of each monomer and the concentration of ELP.In this article,the best order of the correlation coefficient for pseudo-amino acid composition was obtained by using Least Median of Squares Regression from sequence.The uniform design was used to optimize the running parameters and leave-one out cross-validation was carried out to evaluate the model of back propagation neural network(BPNN) and support vector machines,respectively.The results showed that the predicted model obtained by BPNN was the best,of which the mean absolute error and root mean squared error was 0.39 ℃ and 0.89 ℃,respectively.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2011年第2期194-197,共4页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(20806031) 福建省自然科学基金资助项目(2009J01030)
关键词 类弹性蛋白 相变温度 伪氨基酸组成方法 支持向量机 BP神经网络 elastin-like peptides transition temperature pseudo-amino acid composition support vector machines back propagation neural network
  • 相关文献

参考文献13

  • 1URRY D W.Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers[J].Phys Chem (B),1997,101(51):11007-11028. 被引量:1
  • 2CHOW D,NUNALEE M L,CHILKOTI A,et al.Peptide-based biopolymers in biomedicine and biotechnology[J].Mater Sci Eng R Rep,2008,62(4):125-155. 被引量:1
  • 3URRY D W,LUAN C H,PARKER T M,et al.Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity[J].J Am Chem Soc,1991,113 (11):4346-4348. 被引量:1
  • 4MEYER D E,CHILKOTI A.Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides[J].Biomacromolecules,2004,5 (3):846-851. 被引量:1
  • 5OISON S D.Mathematical models for analysis of tissue regeneration in articular cartilage[D].North Carolina State:North Carolina State University,2009. 被引量:1
  • 6CHOU Kuo-chen.Prediction of protein cellular attributes using pseudo amino acid composition[J].Proteins:Structure,Function,and Bioinformatics,2001,43(3):246-255. 被引量:1
  • 7SHEN Hong-bin,CHOU Kuo-chen.PseAAC:A flexible web-server for generating various kinds of protein pseudo amino acid composition[J].Analytical Biochemistry,2008,373 (2):386-388. 被引量:1
  • 8VANPNIK V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995. 被引量:1
  • 9黄永恒,曹平,汪亦显.基于BP神经网络的岩土工程预测模型研究[J].科技导报,2009,27(6):61-64. 被引量:9
  • 10方开泰 均匀设计.数论方法在试验设计的应用.应用数学学报,1980,(4):363-372. 被引量:5

二级参考文献19

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部