期刊文献+

短时睡眠过程中睡眠阶段的特征提取和分类 被引量:2

Feature Extraction and Classification for Short-Time Sleep
下载PDF
导出
摘要 研究对象为白天短时睡眠时记录下来的多导睡眠生理数据,主要是为了提取睡眠过程中出现的睡眠各阶段的特征,并实现自动分期。首先,同步采集了白天20~30 min的短时睡眠过程中的脑电图(EEG)等生理数据;然后利用快速傅里叶变换(FFT)对采集到的数据进行频谱分析,提取睡眠各阶段的频域特征;最后采用支持向量机对短时睡眠数据进行自动分期。实验结果表明:FFT结合支持向量机(SVM)在短时睡眠阶段的研究中能够得到较好的分期结果。因此,通过对短时睡眠过程中浅睡眠各阶段的特征和分类结果的分析,能够为短时睡眠提供客观评价的依据。 The physiological data recorded during the day time short sleep were analyzed.The objective was to extract the characteristics of sleep stages and realize the automatic determination of sleep stages.Firstly,electroencephalography(EEG) and other physiological data of 20~30 min day time were acquired synchronously.Secondly,fast Fourier transform(FFT) was utilized for the spectral analysis and feature extraction.Finally,support vector machine(SVM) was adopted for automatic determination for short-time sleep data.It was shown from the experimental results that FFT with SVM can achieve better results in the study of short-time sleep stages.Hence,the obtained feature extraction and classification results can be utilized as the assistant information for day time short sleep assessment.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期84-89,共6页 Journal of East China University of Science and Technology
基金 国家自然科学基金(60674089) 上海市重点学科建设项目(B504) 中央高校基本科研业务费专项资金项目(WH0914028)
关键词 短时睡眠 脑电图 快速傅里叶变换 支持向量机 short sleep EEG FFT SVM
  • 相关文献

参考文献9

  • 1Kryber M H, Roth T, Dement W C. Dement Principles and Practice of Sleep Medicine [M]. 3rd Edition. USA: W B Saunders Company, 2000. 被引量:1
  • 2Rechtschaffen A, Kales A. A Manual of Standardized Terminology, Techniques and Scoring Systems for Sleep Stages of Human Subjects [M]. Los Angeles: UCLA Brain Information Service/Brain Research Institute, 1968. 被引量:1
  • 3Silber M H, Ancoli-Israel S, Bonnet M H, et al. The visual scoring of sleep in adults[J]. Journal of Clinical Sleep Medicine, 2007, 3(2): 121-31. 被引量:1
  • 4Wang Bei, Sugi T, Wang Xingyu, et al. Automatic sleep stage determination by multi-valued decision making based on conditional probability with optimal parameters [J]. SICE Journal of Control, Measurement, and System Integration, 2008. 1(6). 423-428. 被引量:1
  • 5张泾周,马颖颖,李婷,周钊,苗治平.基于复杂性测度的睡眠脑电分期处理方法研究[J].中国生物医学工程学报,2009,28(3):367-371. 被引量:8
  • 6和卫星,陈晓平,邵珺婷.基于样本熵的睡眠脑电分期[J].江苏大学学报(自然科学版),2009,30(5):501-504. 被引量:26
  • 7Duntley S P, Kim A H, Silbergeld D L, et al. Characterization of the mu rhythm during rapid eye movement sleep[J]. Clin Neuro Physiol, 2001, 112(3):528-531. 被引量:1
  • 8应自炉,李景文,张有为.基于融合的多类支持向量机[J].计算机工程,2009,35(19):187-188. 被引量:11
  • 9李新战,赵震宇.支持向量机基础及其应用前景[J].科技信息,2009(17):39-39. 被引量:5

二级参考文献23

  • 1刘慧,和卫星,陈晓平.睡眠脑电的非线性动力学方法[J].江苏大学学报(自然科学版),2005,26(2):174-177. 被引量:19
  • 2王巧兰,季忠,秦树人.基于小波变换的脑电噪声消除方法[J].重庆大学学报(自然科学版),2005,28(7):15-17. 被引量:20
  • 3刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 4李治,汪曣,刘凤军,周鹏,王明时.入睡脑电信号的去噪[J].中国组织工程研究与临床康复,2007,11(13):2531-2533. 被引量:8
  • 5刘建平,贺太纲,郑崇勋,黄远桂.EEG复杂性测度用于大脑负荷状态的研究[J].生物医学工程学杂志,1997,14(1):33-37. 被引量:16
  • 6Zhang Xusheng, Roy R J, Jensen EW. EEG Complexity as a Measure of Depth of Anesthesia for Patients [J]. IEEE Transactions on Biomedical Engineering. 2001, 48(12): 1424- 1433. 被引量:1
  • 7Huang Liyu, Sun Qixin, Cheng Jiagzhi. Novel Method of Fast Automated Discrimination of Sleep Stages [A]. In: Proceedings of the 25th Annual International Conference of the IEEE EMBS [ C ]. Caneun Mexico: IEEE, 2003. 2273 -2276. 被引量:1
  • 8Zhang Jiwu, Zheng Chongxun, Jiang Da.zong. EEG Complexity Measurement of Focal Ischemie Cerebral Injury [ A ]. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society [ C ]. New York: IEEE, 1998. 2027- 2029. 被引量:1
  • 9Meng Yanli, Liu Bingzheng, Liu Yuping. A comprehensive nonlinear analysis of electromyogram [ A ]. In: Proceedings of the 23rd Annual EMBS Conference [G]. Istanbul Turkey: IEEE, 2001. 1078- 1081. 被引量:1
  • 10Thakor NV. Entropy, complexity and chaos in brain rhythms [ A ], In: Proceedings of the llth IEEE Signal Processing Workshop on [C]. New York: IEEE, 2001. 3-4. 被引量:1

共引文献45

同被引文献23

  • 1薛海波,肖世富,李春波,何燕玲,吴文源,张明园.老年成套神经心理测验的制定和应用[J].中华医学杂志,2005,85(42):2961-2965. 被引量:9
  • 2Sonni A,Spencer RM.Sleep protects memories from interference in older adults[J].Neurobiol Aging,2015;36(7):2272-81. 被引量:1
  • 3Kurdziela L,Duclosb K,Spencer RM,et al.Sleep spindles in midday naps enhance learning in preschool children[J].Proc Natl Acad Sci U S A,2013;110(43):17267-72. 被引量:1
  • 4Studte S,Bridger E,Mecklinger A.Nap sleep preserves associative but not item memory performance[J].Neurobiol Learn Mem,2015;120(1):84-93. 被引量:1
  • 5Campuzano MTG,Shams E,Virues J,et al.The effect of associative memory exercises in older adults[J].Procrdia Social Behav Sci,2013;82(2):707-12. 被引量:1
  • 6喻婧,李娟,黄昕.北京版蒙特利尔认知评估量表在北京新/老城区及农村地区的应用研究[C].北京:首届心理健康学术年会论文集,2012. 被引量:1
  • 7肖世富,李娟,唐牟尼,等.中国老年心理问题的评估、预警与干预示范研究基线报告[C].南京:中华医学会第十次全国精神医学学术会议论文汇编,2012. 被引量:1
  • 8龚耀先,谢光荣,江达威,等.修订韦氏智力量表[C].北京:中国心理学会第三次会员代表大会及建会60周年学术会议(全国第四届心理学学术会议)文摘选集(下),1981;12. 被引量:1
  • 9Cox R,Hofman W,Talamini LM.Involvement of spindles in memory consolidation is slow wave sleep-specific[J].Learn Mem,2012;19(7):264-7. 被引量:1
  • 10Scullin MK,Bliwise DL.Sleep,cognition,and normal aging:integrating a half century of multidisciplinary research[J].Perspect Psychol Sci,2015;10(1):97-137. 被引量:1

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部