期刊文献+

光电跟踪系统非线性新息自适应卡尔曼滤波算法 被引量:10

Nonlinear Innovation Adaptive Kalman Filter Algorithm for Electro-optical Tracking
下载PDF
导出
摘要 为解决非线性部分状态卡尔曼滤波算法中由于线性化误差所导致的滤波精度下降问题,提出采用UT变换方法计算系统状态误差方差,及基于新息自适应调整系统噪声方差,进而构成一种新的非线性自适应部分状态卡尔曼滤波算法,并总结出详细算法结构。同时,将此方法应用到非线性测量光电跟踪系统中,并与U卡尔曼滤波和非线性部分状态卡尔曼滤波进行性能对比。仿真实验结果证明,将UT变换和基于新息自适应调整系统噪声方差方法引入部分状态卡尔曼滤波是有效的,而且其性能明显优于U卡尔曼滤波和非线性部分状态卡尔曼滤波。 In order to solve the problem of accuracy decline caused by the linearization error in nonlinear reduced state Kalman filter, a new nonlinear adaptive reduced state Kalman filter algorithm is provided by using UT transformation to calculate the covariance of the system state error and modify adaptively the system noise covariance based on innovation, and the algorithm structure is summarized in detail. Then, the algorithm is applied in nonlinear measurement electro-optical tracking system and the performances of nonlinear adaptive reduced state Kalman filter were compared with unscented Kalman filter and nonlinear reduced state Kalman filter. The Matlab simulation results show that applying UT transformation and modifying adaptively the system noise covariance based on innovation in reduced state Kalman filter is valid, and the performance outperforms those of the unscented Kalman filter and nonlinear reduced state Kalman filter.
出处 《光电工程》 CAS CSCD 北大核心 2011年第2期9-13,共5页 Opto-Electronic Engineering
基金 吉林省教育厅项目(2009100) 吉林市科技发展计划资助项目(20090601) 东北电力大学博士基金项目(BSJXM-200802)
关键词 卡尔曼滤波 光电跟踪 非线性 Kalman filter electro-optical tracking nolinear
  • 相关文献

参考文献7

二级参考文献20

  • 1杨秀华,陈涛,王延风,吉桐伯.光电跟踪目标的非线性滤波算法研究[J].仪器仪表学报,2004,25(z1):810-812. 被引量:14
  • 2傅建国,王孝通,金良安,马野.Sigma点卡尔曼滤波及其应用[J].系统工程与电子技术,2005,27(1):141-144. 被引量:17
  • 3Saulson Brian, Chang K C. Comparison of Nonlinear Estimation for Ballistic Missile Tracking [J]. Proe. of SPIE(S0277- 786X), 2003, 5096: 13-24. 被引量:1
  • 4LEI Ming, HAN Chong-zhao. Sequential Nonlinear Tracking using .UKF and Raw Range-Rate Measurements [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 2007, 43(1): 239-250. 被引量:1
  • 5Morelande Mark R, Challa Subhash, Gordon Neil. A study of the application of particle filters to single target tracking problems [J]. Proc. of SPIE(S0277-786X), 2003, 5204: 211-222. 被引量:1
  • 6Lee Deok-Jin. Nonlinear Bayesian filtering with applications to estimation and navigation [D]. Korea: Chonbuk National University, 2005. 被引量:1
  • 7Mookerjee Purusottam, Reifler Frank. Reduced State Estimators for Consistent Tracking of Maneuvering Targets [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 2005, 41(2): 608-619. 被引量:1
  • 8Mookerjee P, Reifler F. Reduced state estimator for systems with parametric inputs [J]. IEEE Transactions on Aerospace and ElectronieSystems(S0018-9251), 2004, 40(2): 446-461. 被引量:1
  • 9Julier Simon J, Uhlmann Jeffrey K. Unscented Filtering and Nonlinear estimation [J]. Proceedings of the IEEE(S0018-9219), 2004, 92(3): 401-422. 被引量:1
  • 10[1]Seong-Taek Park, Jang Gyu Lee. Improved kalman filter design for three-dimensional radar measurements [J]. IEEE Transactions on Aerospace and Electronic Systems, 2001,37(2) : 727~739. 被引量:1

共引文献26

同被引文献101

引证文献10

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部