期刊文献+

多层次的网络服务器集群功耗管理 被引量:2

Multi-level power management in network server clusters
下载PDF
导出
摘要 多层次的集群功耗管理方法,在不明显影响系统性能的前提下,降低集群系统的功耗。该管理方法分为集群层次的功耗管理和本地节点层次的功耗管理。集群层次的功耗管理基于自学习负载预测的按需启动策略,根据作业的负载提供计算资源。本地节点层次的功耗管理针对负载下降产生的节点空闲问题,提出了Enhanced-conservative调控器算法,提高了负载下降时频率调整的敏感度。测试实验数据表明,该策略比其他策略能更有效的降低整个系统的功耗。 This paper proposes a multi-level cluster power management,reducing power consumption of the cluster system with less effect on performance.This management can be divided into power management of cluster level and local.Cluster level mechanism presents an ondemand-start strategy based on self-learning load forecasting algorithm,providing computing resources according to the load.Local mechanism suggests an enhanced-conservative governor algorithm to improve the sensitivity of the frequency adjustment when load drops.The experiments show that this multi-level power management is more effective than other strategies for reducing overall system power consumption.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第4期72-76,共5页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(No.2009AA01Z101)~~
关键词 多层次功耗管理 自学习负载预测 按需启动 频率调整 multi-level cluster power management self-learning load forecasting algorithm ondemand-start frequency adjustment
  • 相关文献

参考文献14

  • 1Rivoire S.A balanced energy-effciency benchmark[C]//Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data.New York, USA: ACM, 2007: 365-376. 被引量:1
  • 2Irani S, Pruhs K R.Algorithmic problems in power management[J]. SIGACT News,2005,36(2) :63-76. 被引量:1
  • 3Weiser M,Welch B, Derners A J, et al.Scheduling for reduced CPU energy[C]//Proceedings of the USENIX Symposium on Operating Systems Design and Implementation (OSDI' 94), Monterey, CA, 1994:13 -23. 被引量:1
  • 4Govil K, Chart E, Wasserman H.Comparing algorithms for dynamic speed-setting of a low-power CPU[C]//Proceedings of the 1st Annual International Conference on Mobile Computing and Networking.Berkeley,Callfomla,United gtates:ACM Press, 1995: 13-25. 被引量:1
  • 5Torvalds L.Linus about kernel governor on lkml[EB/OL].http:// marc.theaimsgroup.com/?l=linux-kemel&m= 103056055008566&w=2. 被引量:1
  • 6Garg S K,Yeo C S,Anandasivam A,et al.Energy-efficient scheduling of HPC applications in cloud computing environment[R].Melbourne, Australia: University of Melbourne, 2009. 被引量:1
  • 7Elnozahy E N, Kistler M, Rajamony R.Energy-efficient server clusters[C]//2nd Workshop on Power-Aware Computing Systems, 2002. 被引量:1
  • 8Rusu C, Ferreira A, Scordino C, et al.Energy-efficient real-time heterogeneous server clusters[C]//Proeeedings of the 12th IEEE, Real-Time and Embedded Technology and Applications Syrup, San Jose, CA, USA, 2006: 418-428. 被引量:1
  • 9Bertini L,Leite J C B,Mosse D.Optimal dynamic configuration in web server clusters[R].Instituto de Computacao,UFF,2008. 被引量:1
  • 10Horvath T, Skadron K, Abdelzaher T.Enhaneing energy in multi-tier web server with end-to-end delay control[J].IEEE Transactions on Computers, 2007,56(4) : 444-458. 被引量:1

同被引文献20

  • 1吴琦,熊光泽.非平稳自相似业务下自适应动态功耗管理[J].软件学报,2005,16(8):1499-1505. 被引量:20
  • 2Rangan K. The Cloud Wars: $100+ billion at stake. Tech.rep, Merrill Lynch, May 2008. 被引量:1
  • 3Siegele L. Let It Rise: A Special Report on Corporate IT. The Economist (October 2008). 被引量:1
  • 4Natural Resources Defense Council Recommendations for Tier I ENERGY STAR Computer Specification. http://www. energystar.gov/ia/partners/prod_development/revisions/down loads/computer/RecommendationsTierlCompSpecs.pdf. 被引量:1
  • 5Kim KH, Beloglazov A, Buyya R. Power-aware provisioning of cloud resources for real-time services. In Proceedings of the 7th International Workshop on Middleware for Grids, Clouds and e-Science (MGC2009). Urbana Champaign, USA, December 2009. 被引量:1
  • 6Ge R, Feng X, Cameron KW. Performance-constrained Distributed DVS Scheduling for Scientific Applications on Power-aware Clusters. Proceedings of the ACM/IEEE SC 2005, Seattle, USA, November 2005. 被引量:1
  • 7Hsu CH, Feng W. A Power-Aware Run-Time System for High-Performance Computing. Proc. of Supercom- puting'05, November 2005. 被引量:1
  • 8Duy TVT, Sato Y, Inoguchi Y. Performance Evaluation of a Green Scheduling Algorithm for Energy Savings in Cloud Computing, Proc. 24th IEEE International Parallel and Distributed Processing Symposium (The 6th Workshop on High-Performance, Power-Aware Computing), 1-8, Apr. 2010. 被引量:1
  • 9Younge A J, Gvon Laszewski, Wang L, et al. Efficient Resource Management for Cloud Computing EnvironmentsProceedings of the IEEE lntemational Green Computing Conference (IGCC).Chicago:IEEE,2010:357-364. 被引量:1
  • 10Wang Y, Wang X. Power Optimization with Performance Assurance for Multi-tier Applications in Virtualized Data Centers. 39th International Conference on Parallel Processing Workshops.San Diego: IEEE,2010:1-8. 被引量:1

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部