5Polizeli MLTM,Rizzatti ACS, Monti R t Terenzi HF,Jorge JA, Amorim DS. Xylanases from fungi : propertiesand industrial applications. Applied Microbiology andBiotechnology, 2005,67 (5) : 577- 591. 被引量:1
6Turunen 0,Etuaho K,Fenel F, Vehmaanpera J, WuX,Rouvinen J, Leisola M. A combination of weaklystabilizing mutations with a disulfide bridge in the a-helixregion of Trichoderma reesei endo-1,4-p-xylanase IIincreases the thermal stability through synergism. Journalof Biotechnology,2001,88 (1) : 37-46. 被引量:1
7Jeong MY,Kim S,Yun CW, Choi YJ, Cho SG.Engineering a de novo internal disulfide bridge to improvethe thermal stability of xylanase from Bacillusstearothermophilus No. 236. Journal of Biotechnology,2007,127 (2) : 300-309. 被引量:1
8Paes G, O’Donohue MJ. Engineering increasedthermostability in the thermostable GH-11 xylanase fromThermobacillus xylanilyticus. Journal of Biotechnology,2006’ 125 (3) : 338-350. 被引量:1
9Dumon C, Varvak A, Wall MA, Flint JE, Lewis RJ,Lakey JH, Morland C,Luginbiihl P, Healey S, TodaroT, DeSantis G,Sun M, Parra-Gessert L, Tan X,Weiner DP, Gilbert HJ. Engineeringhyperthermostability into a GH11 xylanase is mediated bysubtle changes to protein structure. Journal of BiologicalChemistry,2008,283 (33) : 22557-22564. 被引量:1
10Zhou CY, Wang YT, Wu MC,Wang W, Li DF.Heterologous Expression of Xylanase II from Aspergillususamii in Pichia pastoris. Food Technology andBiotechnology, 2009,47 (1) : 90-95. 被引量:1