期刊文献+

多散射杂质对二维电子系统输运特性的影响 被引量:4

Influence of multi-scattering impurities on transport properties of two-dimensional electron systems
下载PDF
导出
摘要 利用散射矩阵理论研究了含有多个矩形散射杂质二维系统中电子输运问题。绝对零度下,电导随入射电子能量增大,呈台阶式上升形式;杂质宽度的减小使得电导的量子化现象增强;杂质长度的增大,使得电导在最初阶段急剧减小,而后呈现周期性振荡;随着散射杂质数量的增加,电导由急剧减小也呈现周期性振荡。温度的升高使得电导台阶倾斜,量子化现象逐渐消失。 By using scattering matrix theory,the electron transport in a two-dimensional system containing multi-rectangular scattering impurities is studied.At zero temperature,the conductance shows the quantum phenomena which increases with the increase of electron energy and with the decrease of the width of scattering impurities.The impurity makes the conductance decrease rapidly at its small length,and at large length the conductance shows periodic oscillation.In the multi-scattering system,the conductance no longer decreases rapidly but oscillates with increasing number of scattering impurities.The increase of temperature makes the conductance stages tilt and the quantum phenomena disappear gradually.
作者 白志明 马强
出处 《河北科技大学学报》 CAS 北大核心 2011年第1期1-7,共7页 Journal of Hebei University of Science and Technology
关键词 杂质 电导量子化 散射矩阵理论 impurity conductance quantization scattering matrix theory
  • 相关文献

参考文献15

二级参考文献85

共引文献12

同被引文献19

  • 1谢月娥,颜晓红,陈元平.量子点超晶格中的电子输运[J].湘潭大学自然科学学报,2005,27(2):84-88. 被引量:3
  • 2张红梅,刘德.传递矩阵方法与矩形势垒的量子隧穿[J].河北科技大学学报,2006,27(3):196-199. 被引量:10
  • 3CASTRO N A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Rev Mod Phys, 2009, 81(1) : 109 -162. 被引量:1
  • 4NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669. 被引量:1
  • 5NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature (London), 2005,438: 197-200. 被引量:1
  • 6CASTRO E V, NOVOSELOV K S, MOROZOV S V, et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect[J]. Phys Rev Lett, 2007, 99(21): 216802 pp. 1-4. 被引量:1
  • 7KATSNELSON M I, NOVOSELOV K S, GEIM A K. Chiral tunnelling and the Klein paradox in graphene[J]. Nature Phys,2006, 2(9): 620-625. 被引量:1
  • 8BAI Chun-xu, ZHANG Xiang-dong. Klein paradox and resonant tunneling in a graphene superlattice[J]. Phys Rev B, 2007,76(7): 075430 pp. 1-7. 被引量:1
  • 9BARBIER M, PEETERS F M, VASILOPOULOS P, et al. Dirac and Klein-Gordon particles in one-dimensional periodic potentials[J]. Phys Rev B, 2008,77(11): 115446 pp. 1 9. 被引量:1
  • 10BREY L, FERTIG H A. Emerging aero modes for graphene in a periodic potential[J]. Phys Rev Lett, 2009, 103(4) :046809 pp. 1-4. 被引量:1

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部