期刊文献+

基于话题和修辞识别的阅读理解why型问题回答 被引量:9

Why-Questions Answering for Reading Comprehension Based on Topic and Rhetorical Identification
下载PDF
导出
摘要 针对阅读理解问答中的why型问题,提出基于问题话题和话题间因果修辞关系识别的答案句抽取方法.抽取时利用机器学习方法,选择可识别出对应问题话题的句子特征、问题话题与句子上下文之间因果关系特征,对篇章内的句子按照成为答案句的概率进行排序.对应问题话题的句子识别利用基于idf和语义角色的相似度;因果修辞关系的识别利用线索短语、特定语义角色、从文档集中挖掘的词间蕴含的因果关系概率信息、句子上下文的位置与表达形式.Remedia语料上的实验结果表明,该方法明显提高了why型问题回答的性能. As an important branch in the study of question answering system,automatic reading comprehension(RC) system involves reading a short passage of text and answering a series of questions pertaining to that text.In all question types including who,what,when,where,why studied in the field of RC,answer extraction of why-question should apply the discourse structure information of text and the answer is not an named entity.Concerning these difference of why-question with other types,an answer sentence extraction approach for why-question of reading comprehension is given in this paper based on question topic and causal rhetorical relation identification.It uses machine learning model to rank sentences in text according to their probabilities of becoming answer sentence.In the model,two kinds of feature are used for identification of text sentence corresponding to question topic and that of causal rhetorical relation between question topic and sentence context respectively.In all features,the idf and semantic role similarity features are utilized to identify the sentence corresponding to the question topic,and other features,including cue phrases,special semantic roles,causal relation entailment probabilities between words mined from large scale document collections,position and expression format of sentence context,are used to identify causal rhetorical relation.Experimental results on Remedia corpus show that the method improves significantly the performance of reading comprehension why-question answering.
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第2期216-223,共8页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2006AA01Z145) 国家自然科学基金项目(60736044 60675034)
关键词 why型问题 话题 修辞关系 答案抽取 阅读理解 why-question topic rhetorical relation answer extraction reading comprehension
  • 相关文献

参考文献13

  • 1Hirschman L, Light M, Breck E, et al. Deep read: A reading comprehension system [C] //Proc of ACL 1999. College, Park, Maryland: Association for Computational Linguistics, 1999 : 325-332. 被引量:1
  • 2Clarke C L A, Cormack G V, Lynam T R. Exploiting redundancy in question answering [C] //Proc of SIGIR 2001. New York, ACM, 2001, 358-365. 被引量:1
  • 3Jijkoun V, De Rijke M. Retrieving answers from frequently asked questions pages on the Web [C] //Proe of CIKM-2005. New York: ACM, 2005:76-83. 被引量:1
  • 4吴友政,赵军,徐波.基于主题语言模型的句子检索算法[J].计算机研究与发展,2007,44(2):288-295. 被引量:8
  • 5Ng H T, Teo L H, Lai J, et al. A machine learning approach to answering questions for reading comprehension tests [C] //Proc of the 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora. Hong Kong:Association for Computational Linguistics, 2000: 124-132. 被引量:1
  • 6Xu Kui, Meng H. Using verb dependency matching in a reading comprehension system [G]. //LNCS 3411: Proc of AIRS 2004. Berlin: Springer, 2004:190-201. 被引量:1
  • 7Riloff E, Thelen M. A rule-based question answering system for reading comprehension tests [C] //Proc of ANLP/ NAACL 2000 Workshop on Reading Comprehension Tests as Evaluation for Computer-Based Language Understanding Systems. Washington: Association for Computational Linguistics, 2000:13-19. 被引量:1
  • 8Verberne S, Boves L, et al. Discourse-based answering of why-questions [J]. Traitement Automatique des Langues, 2007, 47(2): 21-41. 被引量:1
  • 9Verberne S. Evaluating answer extraction for why-QA using RST-annotated Wikipedia texts [C] //Proe of 12th ESSLLI Student Session. Dublin, Ireland: Trinity College, 2007: 255-266. 被引量:1
  • 10Du Yongping, Meng H, et al. The use of metadata, Webderived answer patterns and passage context to improve reading comprehension performance [C]//roe of HLTIEMNLP 2005. Vancouver, Canada: Association for Computational Linguistics, 2005 : 604-611. 被引量:1

二级参考文献14

  • 1A Ittycheriah,S Roukos.IBM's statistical question answering system-TREC 11[C].The 11th Text REtrieval Conference,Gaithersburg,Maryland,USA,2002 被引量:1
  • 2H Yang,T S Chua.The integration of lexical knowledge and external resources for question answering[C].The 11th Text REtrieval Conference,Maryland,USA,2002 被引量:1
  • 3A C Emmanuel,W B Croft,V Murdock.Answer passage retrieval for question answering[C].The 27th Annual Int'l Conf on Research and Development in Information Retrieval,Sheffield,UK,2004 被引量:1
  • 4V Murdock,W B Croft.Simple translation models for sentence retrieval in factoid question answering[C].The SIGIR 2004 Workshop on Information Retrieval for Question Answering,Sheffield,UK,2004 被引量:1
  • 5W Bruce Croft,John Lafferty.Language Modeling for Information Retrieval[M].Amsterdam,Netherlands:Kluwer Academic Publishers,2003 被引量:1
  • 6C Zhai,J Lafferty.A study of smoothing techniques for language modeling applied to ad hoc information retrieval[C].The ACM SIGIR Conf on Research and Development in Information Retrieval,New Orleans,USA,2001 被引量:1
  • 7A Berger,R Caruana,D Cohn,et al.Briding the lexical chasm:Statistical approaches to answer-finding[C].The 23rd Annual Conf on Research and Development in Information Retrieval,Athens,Greece,2000 被引量:1
  • 8T Hofmann.Probabilistic latent semantic indexing[C].The 22nd Annual Int'l SIGIR Conf on Research and Development in Information Retrieval,Berkeley,USA,1999 被引量:1
  • 9J Ponte,W Bruce Croft.A language modeling approach to information retrieval[C].The 1998 ACM SIGIR,Melbourne,Australia,1998 被引量:1
  • 10V Lavrenko,W B Croft.Relevance-based language models[C].The 2001 ACM SIGIR Conf on Research and Development in Information Retrieval,New Orleans,USA,2001 被引量:1

共引文献9

同被引文献120

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部