期刊文献+

基于浅层语义树核的阅读理解答案句抽取 被引量:14

Answer Sentence Extraction of Reading Comprehension Based on Shallow Semantic Tree Kernel
下载PDF
导出
摘要 阅读理解系统是通过对一篇自然语言文本的分析理解,对用户根据该文本所提的问题,自动抽取或者生成答案。本文提出一种利用浅层语义信息的英文阅读理解抽取方法,首先将问题和所有候选句的语义角色标注结果表示成树状结构,用树核(tree kernel)的方法计算问题和每个候选句之间的语义结构相似度,将该相似度值和词袋方法获得的词匹配数融合在一起,选择具有最高分值的候选句作为最终的答案句。在Remedia测试语料上,本文方法取得43.3%的HumSent准确率。 Automatic reading comprehension systems can analyze a given passage and generate/extract answers in response to questions about the passage. An approach integrating shallow semantic information to extract answer sentence is proposed in this paper. The labeled semantic roles in question and candidate sentences are represented as semantic trees, then the structure similarity is calculated using tree kernel between them. After combining the similarity with matching words count obtained using bag of-words method, the sentence with the highest score is chosen as answer sentence. The proposed approach achieves 43.3% HumSent accuracy on the Remedia corpora.
出处 《中文信息学报》 CSCD 北大核心 2008年第1期80-86,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60435020 60675034) 国家863项目(2006AA01Z145)
关键词 计算机应用 中文信息处理 阅读理解 答案句抽取 浅层语义 树核 computer application Chinese information processing reading comprehension answer sentence extraction shallow semantic tree kernel
  • 相关文献

参考文献14

  • 1Lynette Hirschman,Marc Light,Eric Breck,and John D.Burger.Deep Read:A Reading Comprehension System[A].In:Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics[C].1999.325-332. 被引量:1
  • 2Charles L.A.Clarke,Gordon V.Cormack,Thomas R.Lynam.Exploiting Redundancy in Question Answering[A].In:Proceedings of the 24th ACM Conference on Research and Development in Information Retrieval (SIGIR-2001)[C].2001.358-365. 被引量:1
  • 3Eugene Charniak,Yasemin Altun,Rodrigo de Salvo Braz.Reading Comprehension Programs in a Statistical-Language-Processing Class[A].In:Proceedings of the ANLP/NAACL 2000 Workshop on Reading Comprehension Tests as Evaluation for ComputerBased Language Understanding System[C].2000.1-5. 被引量:1
  • 4Kui Xu and Helen Meng.Using Verb Dependency Matching in a Reading Comprehension System[A].First Asia Information Retrieval Symposium (AIRS 2004)[C].2004.190-201. 被引量:1
  • 5Ellen Riloff and Michael Thelen.A Rule-based Question Answering System for Reading Comprehension Tests[A].In:Proceedings of ANLP/NAACL 2000 Workshop on Reading Comprehension Tests as Evaluation for Computer-Based Language Understanding Systems[C].2000.13-19. 被引量:1
  • 6Kui Xu,Helen Meng,Fuliang Weng.A Maximum Entropy Framework that Integrates Word Dependencies and Grammatical Relations for Reading Comprehension[A].In:Proceedings of the Human Language Technology Conference of the NAACL[C].2006.185-188. 被引量:1
  • 7Hwee Tou Ng,Leong Hwee Teo,Jennifer Lai Pheng Kwan.A Machine Learning Approach to Answering Questions for Reading Comprehension Tests[A].In:Proceedings of the 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora[C].2000.124-132. 被引量:1
  • 8车万翔,刘挺,李生.自动浅层语义分析[A].中文信息处理前沿进展--中国中文信息学会二十五周年学术会议[C].2006.161-171. 被引量:1
  • 9Michael Collins,and Nigel Duffy.New ranking algorithms for parsing and tagging:Kernels over discrete structures,and the voted perception[A].In:Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (ACL'02)[C].2002.263-270. 被引量:1
  • 10George A.Miller.WordNet:an On-line lexical database[J].International Journal of Lexicography.1990,3(4):235-244. 被引量:1

同被引文献83

引证文献14

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部