期刊文献+

双峰截尾变量的矩界(英文)

Moment Bounds for truncated bimodal distributions
下载PDF
导出
摘要 对具有给定的EXi=mi(i=1,2,3)和双峰的随机变量X∈[0,M],得到截尾变量max(0,X-K)的均值的矩界,以及小值概率的上界。这些问题来源于双峰分布下小值概率及欧氏期权等的研究,所用方法基于控制待估函数和测度变换。 Given any bimodal random variable X E [ 0, M ] with EXi = mi ( i = 1, 2, 3 ) and modes fixed, upper bounds are derived on small value probability P( X 〈 t) and the truncated random variable max(0,X- K) with K 〉 0 given. Motivation comes not only from small value probability but also from questions associated with European call option under mixture of two unimodal distribution. The key techniques are to pass the distribution function to an auxiliary function and then to employ duality theory and change of measures.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2011年第1期1-3,7,共4页 Journal of Natural Science of Heilongjiang University
基金 Supported by the National Science Foundation of China(10776006) the Natural Science Foundation of Heilongjiang Province(A2007-04)
关键词 对偶 矩问题 欧氏期权 双峰分布 测度变换 Duality moment problems bimodal distribution European call option change of measure
  • 相关文献

参考文献8

  • 1ROBERTSON C A, FRYER J G. Some descriptive properties of normal mixtures[ J]. Scand Actuar Tidskr, 1969,52:137 - 146. 被引量:1
  • 2BLOCK H W, LI Y, SAVIT T H. Mixtures of normal distributions: Modality and failure rate[J]. Stat Prob Lett,2005, 74(3) :253 -264. 被引量:1
  • 3LIU F, LIU Y. The failure rate properties of a bimodal mixture of normal distributions in an unequal variance case [ J ]. Stat Prob Lett. doi : 10. 1016/j, spl. 2008.01. 083. 被引量:1
  • 4SULTAN K S, ISMAIL M A, AL- MOISHEER A S. Mixtrue of two inverse Weibull distributions: properties and estimation [ J ]. Computational Statistics and Data Analysis,2007,51:5377 - 5387. 被引量:1
  • 5KIMA T Y, PARKB B U, MOONC M S, et al. Using bimodal kernel for inference in nonparametric regression with correlated errors[ J]. Journal of Multivariate Analysis, 2009,100 (7) : 1487 - 1497. 被引量:1
  • 6KIMA H J. A class of weighted multivariate elliptical models useful for robust analysis of nonnormal and bimodal data[ J]. The Korean Statistical Society. doi : 10. 1016/j. jkss. 2009.04. 006. 被引量:1
  • 7DHARMADHIKARI S, JOAG- DEV K. Unimodality, convexity and applications in probability and mathematical statistics[ M ]. San Diego, CA: Academic Press, 1988. 被引量:1
  • 8KARLIN S, STUDDEN W. Tchebyshev systems: with applications in analysis and statistics, pure and applied mathematics[ M ]. New York:Wiley Interscience, 1966. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部