期刊文献+

飞行机器人递归小脑神经网络模型分解控制 被引量:2

Recurrent CMAC model decomposition control for flying robot
下载PDF
导出
摘要 为解决一类不确定非线性系统的控制问题及系统混合干扰上界在实际应用中难以测量的问题,提出递归小脑神经网络模型分解控制算法。将系统分为名义模型、结构不确定性和非结构不确定性,分别对名义模型设计直接反馈控制器、对结构不确定性设计自适应控制器、对非结构不确定性设计鲁棒控制器。设计递归小脑模型关节控制器作为观测器来对系统干扰的上界进行实时逼近。李亚普诺夫理论证明了控制算法可使系统渐进稳定,微飞行机器人姿态控制仿真结果表明,控制算法改善了系统的动态性能及鲁棒性。研究结论为复杂非线性系统的有效控制提供了依据。 Model decomposition algorithm with recurrent cerebellar model articulation controller(CMAC) was proposed for a class of uncertain nonlinear systems whose upper boundary of lumped disturbance is difficult to measure in practice.The system was divided into nominal model,structured uncertainty,and unstructured uncertainty.A direct feedback controller was contrived for the nominal model,an adaptive controller was designed for the structured uncertainty,and a robust controller was schemed for the unstructured uncertainty respectively.The recurrent CMAC was framed as an observer to approximate the upper boundary of lumped disturbance in real-time.The asymptotically stability was proved based on Lyapunov's stability theory,and simulation results of micro flying robot attitude control indicated that the proposed algorithm improves transient performance and robustness.Research conclusions provide the basis for effective control of complex nonlinear systems.
出处 《电机与控制学报》 EI CSCD 北大核心 2011年第1期91-97,共7页 Electric Machines and Control
基金 航天支撑技术基金(2007-HT-HGD-7)
关键词 非线性 自适应控制 鲁棒控制 小脑模型关节控制器 飞行机器人 nonlinearity adaptive control robust control cerebellar model articulation controller flying robot
  • 相关文献

参考文献13

  • 1WZOREK M, CONTE G, RUDOL P, et al. From motion planning to control-a navigation framework for an autonomous unmanned aerial vehicle[ C ]//21 th Bristol UAV Systems Conference, April 3 -5, 2006, Bristol, UK. 2006:1 -15. 被引量:1
  • 2BRAS F L, MAHONY R, HAMEL T, et al. Adaptive filtering and image based visual servo control of a ducted fan flying robot [ C] //Proceedings of the 45th IEEE Conference on Decision and Control, December 13 - 15,2006, San Diego, USA. 2006 : 1751 - 1757. 被引量:1
  • 3SCHERER S, SINGH S, CHAMBERLAIN L, et al. Flying fast and low among obstacles [ C ]//2007 IEEE International Confer- ence on Robotics and Automation, April 10 - 14, 2007 ,Roma, It- aly. 2007 : 2023 - 2029. 被引量:1
  • 4LA C M, PAPAGEORGIOU G, MESSNER W C, et al. Integrated modeling and robust control for full-envelope flight of robotic heli- copters [ C ]//2003 IEEE International Conference on Robotics and Automation, September 14 - 19, 2003, Taipei, China. 2003,1 : 552 -557. 被引量:1
  • 5POUNDS P, MAHONY R, HYNES P, et al. Design of a four ro- tor aerial robot[ C ]//2002 Australian Conference on Robotics and Automation, November 27 - 29, 2002. Auckland, New Zealand. 2002: 145-150. 被引量:1
  • 6DENG Xinyan, SCHENATO Luca, SASTRY Shankar S. Model i- dentification and attitude control for a micromechanical flying in- sect including thorax and sensor models[ C] //2003 IEEE Interna- tional Conference on Robotics and Automation, September 14 - 19, Taipei, China. 2003, 1:1152-1157. 被引量:1
  • 7RYSDYK R, CALISE A J. Robust nonlinear adaptive flight con- trol for consislent handling qualities [ J ]. IEEE Transactions on Control Systems Technology, 2005, 13(6) :896 -910. 被引量:1
  • 8DZUL A, LOZANO R, CASTILLO P. Adaptive altitude control for a small helicopter in a vertical flying stand[ C]//42nd IEEE Con- ference on Decision and Control, December 9 -12, 2003, Maui, USA. 2003, 3:2710-2715. 被引量:1
  • 9BOSKOVIC J D, MEHRA R K. A robust adaptive reconfigurable flight control scheme for accommodation of control effector failures [ C]//2001 American Control Conference, June 25 -27, 2001, Arlington, USA. 2001, 2:1127-1132. 被引量:1
  • 10LIU Guangjun, GOLDENBERG Andrew A. Uncertainty decom- position based robust control of robot manipulators [ J ]// IEEE Transactions on Control Systems Technology, 1996,4 ( 4 ) : 384 - 393. 被引量:1

二级参考文献12

  • 1Li Shaoyuan & Xi Yugeng (Shanghai Jiaotong University, 200030, P. R. China).A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems[J].Journal of Systems Engineering and Electronics,2000,11(1):61-66. 被引量:2
  • 2刘岚,方宗德,侯宇,傅卫平,吴立言.微型扑翼飞行器的气动建模分析与试验[J].航空动力学报,2005,20(1):22-28. 被引量:15
  • 3Khan Z A,Agrawal S K.Force and moment characterization of flapping wings for micro air vehicle application[C]// In American Control Conference.June 8-10,Portland or USA:2005:1515-1520. 被引量:1
  • 4Lasek M,Pietrucha J,Zlocka M,et al.Analogies between rotary and flapping wings from control theory point of view[R].AIAA-2001-4002. 被引量:1
  • 5Sane S P,Dickinson M H.The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight[J].Journal of Experimental Biology,2002,205:1087-1096. 被引量:1
  • 6Balint C N,Dickinson M H.Neuromuscular control of aerodynamic forces and moments in the blowfly,Calliphora vicina[J].Journal of Experimental Biology,2004,207:3813-3838. 被引量:1
  • 7Masashi H.Calculation method for optimal circulation distribution on a finite span flapping wing[R].AIAA-2002-3414. 被引量:1
  • 8Sane S P,Dickinson M H.The control of flight force by a flapping wing:lift and drag production[J].Journal of Experimental Biology,2001,204:2607-2626. 被引量:1
  • 9Schenato L,Campolo D,Sastry S.Controllability lssues in flapping flight for biomimetic micro aerial vehicles (MAVs)[C]//In Proceedings of the 42nd IEEE International Conference on Decision & Control.December,Maui,Hawaii USA:2003:6441-6447. 被引量:1
  • 10Lasek M,Pietrucha J,Sibilski K.Micro air vehicle maneuvers as a control problem of flexible flapping wings[R].AIAA-2002-0526. 被引量:1

共引文献26

同被引文献29

  • 1BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performane[ J]. IEEE Transactions on Automatic Control, 2008,53 (9): 2090-2098. 被引量:1
  • 2YANG C G, ZHAI L F. Adaptive model reference control of a class of MIMO discrete-time systems with compensation of nonpara- metric uncertainty[ C]//Proceedings of American Control Canfer- ene, June 11 -13, 2008, Seattle, USA. 2008:4111 -4116. 被引量:1
  • 3KIM N, CALISE A J. Neural network based adaptive output feed- back augmentation of existing controllers [ J ]. Aerospace Science and Technology, 2008, 12 (3): 248-255. 被引量:1
  • 4HAYAKAWA T, HADDAD W M, HOVAKIMYAN N. Neural network adaptive control for a class of nonlinear uncertain dynami- cal sys-tems with asymptotic stability guarantees[ J]. IEEE Trans- actions on Neural Networks, 2008, 19 (1) : 80-89. 被引量:1
  • 5HOVAKIMYAN N, YANG B J, CALISE A J. Adaptive output feedback control methodology applicable to non-minimum phase nonlinear systems[ J]. Automatic, 2006, 42 (4) : 513 - 522. 被引量:1
  • 6HAGA R, MATSUURA A, SUZUKI S. Neural network based a- daptive flight control using feedback error learning[ C]//Proceed- ings of AIAA Guidance, Navigation, and Control Conference and Exhibit, August 21 - 24, 2006, Keystone,USA. 2006 : 1 - 10. 被引量:1
  • 7YANG B J, CALISE A J. Adaptive control of a class of nonaffine systems using neural networks [ J]. IEEE Transactions on Neural Networks, 2007, 18 (4): 1149-1159. 被引量:1
  • 8SHIN Y, CALISE A J, MOTFER M A. Adaptive autopilot de- signs for an unmanned aerial vehicle[ C]// AIAA Guidance, Navigation, and Control Conference and Exhibit, August 15 - 18, 2005, San Francisco, USA. 2005 : 1 -20. 被引量:1
  • 9CALISE A J, LEE S, SHARMA M. Development of a reconfigu- table flight control law for a tailless aircraft[ J]. Journal of Guid- ance Control and Dynamics, 2001,24 (5) : 896 -902. 被引量:1
  • 10HOVAKIMYAN N, YANG B J, CALISE A J. An adaptive out- put feedback control methodology for non-minimum phase systems [ C ]//Proceedings of the 41 st IEEE Conference on Decision and Control, December 10 - 13, 2002, Las Vegas, USA. 2002 : 949 - 955. 被引量:1

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部