摘要
研究K-本原环.证明了素环R是K-本原环当且仅当R含有一个非零理想I是K-本原环,当且仅当eRe是K-本原环,其中e是R的非零幂等元.并证明了GPI素环是K-本原环.推广了文献中的相应结果.
This note is devoted to the study of K-primitive rings. It is proved that a prime ring R is K-primitive if and only if its a nonzero ideal is K-primitive, if and only if ere is K-primitive for some nonzero idempotent e to R, It is also shown that GPI prime rings are K-primitive. Related results in the literatures are generalized.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第3期223-227,共5页
Mathematics in Practice and Theory
基金
黑龙江省教育厅课题项目(11553115)
黑龙江省教育厅课题项目(11553114)
关键词
K-本原环
素环
GPI
古典商环
K-primitive ring
prime ring
GPI
classical quotient ring