摘要
文章给出了一类一阶非线性常微分方程ddyx-λλ′y=qΦ(λ,y)的可积条件及其通解公式。指出一阶微分方程的一些经典的可积类型都是这结果的特例,特别是著名的Riccati方程和Abel方程的一些可积性结果也是它的特例。
Integrability conditions and general solution formulas in parameter form are given for the First Order Generalized Ordinary Differential Equation,and the equation is expressed as follows:dy dx-λ′ λy=qΦ(λ,y)Some classical integrable types of first order differential equation are pointed as particular cases of these results,and some modern integrable outcomes of the well-known Abel equation and Riccati equation are especially their specific examples.
出处
《南昌航空大学学报(自然科学版)》
CAS
2010年第4期51-54,共4页
Journal of Nanchang Hangkong University(Natural Sciences)
基金
陕西省教育厅科研计划项目"拟线性扩散方程精确解的构造"(2010JK400)
宝鸡文理学院科研资助项目"常微分方程稳定性研究"(ZK0812)