期刊文献+

非参数信念传播的WSN目标跟踪方法 被引量:1

Method of WSN Target Tracking Based on Nonparametric Belief Propagation
下载PDF
导出
摘要 针对传统粒子滤波的数据融合和粒子贫乏问题,提出一种结合非参数信念传播和粒子滤波(NBP-RPF)的分布式WSN目标跟踪方法。首先检测目标的节点,然后对检测数据进行核密度估计(KDE)得到目标估计信息,最后,通过非参数信念将信息传播到簇首节点,簇首节点对信息乘积进行Gibbs采样和正则化粒子滤波,实现了对目标的精确跟踪。仿真结果表明,NBP-RPF法在增加粒子多样性和有效融合数据等方面具有优势,同时也提高了目标的跟踪精度。 Aiming at the problem of data fusion and particle degeneracy in traditional particle filtering,the target tracking method of distributed WSN based on the combination of nonparametric belief propagation and regularized particle filtering(NBP-RPF) is proposed.First,the node of target is detected,then kernel density estimation(KDE) is conducted for detected data and the target estimation information is obtained.Finally,the information is transmitted to the cluster head node;the product of information is Gibbs sampled and regulation particle filtered for realizing precise tracking.The result of simulation indicates that the method proposed possesses superiority in increasing particle diversity and effective fusion data;and enhances the accuracy of target tracking.
出处 《自动化仪表》 CAS 北大核心 2011年第1期19-22,共4页 Process Automation Instrumentation
基金 广东省自然科学基金资助项目(编号:9151052101000013) 茂名市重点科技计划资助项目(编号:20091010)
关键词 无线传感器网络 非线性模型 滤波 均方根误差 多样性 Wireless sensor network(WSN) Nonlinear model Filtering Root-mean square error Diversity
  • 相关文献

参考文献11

  • 1李建中.无线传感器网络专刊前言[J].软件学报,2007,18(5):1077-1079. 被引量:21
  • 2Alexande T I. Inference in sensor networks:graphical models and particle methods [ D ]. Boston: Massachusetts Institute of Technology ,2005. 被引量:1
  • 3Celebi M B,Kara A,Akar B, et al. A new approach to threat tracking on ESM systems by using Kalman filters [ C ]//Signal Processing and Communications Applications Conference ,2009 : 173 - 176. 被引量:1
  • 4Binazzi G,Chisci L,Chiti F,et al. Localization of a swarm of mobile agents via unscented Kalman filtering [ C ]//2009 IEEE International Conference on Communications,2009:1 - 5. 被引量:1
  • 5Lee Y W. Development of the multi-target tracking scheme using particle filter[J]. Lecture Notes in Computer Science ,2007 : 1192 - 1201. 被引量:1
  • 6王昆..基于粒子滤波器的机动目标跟踪技术[D].南京理工大学,2007:
  • 7胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 8Han T X, Ning hunzhong, Huang T S. Efficient nonparametric belief propagation with application to articulated body tracking [C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York,2006 ( 17 - 22) :214 - 221. 被引量:1
  • 9Sudderth E B,Mandel M I,Freeman W T,et al. Visual hand tracking using nonparametric belief propagation [ C ] //2004 Conference on Computer Vision and Pattern Recognition Workshop,2004 : 189. 被引量:1
  • 10Sudderth E B, Ihler A T, Freeman W T, et al. Nonparametrie belief propagation [ C ] ,//Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2003:605 - 612. 被引量:1

二级参考文献1

共引文献312

同被引文献12

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部