期刊文献+

基于PCA与KPCA的TE过程故障检测应用研究 被引量:11

Research on Fault Detection of Tennessee Eastman Process Based on PCA and KPCA
下载PDF
导出
摘要 针对传统主元分析法(PCA)应用于复杂非线性的化工过程故障检测时存在性能差的问题,提出利用核主元分析法(KPCA)来进行故障检测的思想,从而将输入空间中复杂的非线性问题转化为特征空间中的线性问题。将上述方法应用于Tennessee Eastman(TE)化工过程模型,仿真结果表明,KPCA方法在复杂非线性化工过程故障检测方面的应用明显优于普通的PCA方法。 For complex and nonlinear chemical industry processes,the performance of fault detection is very poor when traditional principal component analysis(PCA) is used.Thus the concept of using kernel principal component analysis(KPCA) to conduct fault detection is proposed,which will make the complex nonlinear problem in input space convert into linear problem in feature space.This method is applied in Tennessee Eastman(TE) chemical industry process.The simulation result shows that KPCA method is obviously better than common PCA method in fault detection for complex nonlinear chemical process.
出处 《自动化仪表》 CAS 北大核心 2011年第1期8-12,共5页 Process Automation Instrumentation
基金 甘肃省自然科学基金资助项目(编号:0809RJZA005) 甘肃省科技支撑计划资助项目(编号:090GKCA034)
关键词 故障检测 过程监控 非线性 鲁棒性 信噪比 Fault detection Process monitoring Nonlinearity Robustness Signal to noise
  • 相关文献

参考文献8

二级参考文献27

共引文献63

同被引文献99

引证文献11

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部