期刊文献+

ANN-DT混合建模法在机组水冷系统渗漏监测中的应用 被引量:1

Application of ANN-DT based Hybrid Modeling Approach to Leakage Detection of Water-cooling System of Generating Units
下载PDF
导出
摘要 发电机内冷水系统是发电机组安全运行的一个重要组成部分,其渗漏监测是在强干扰下弱信号的识别问题。针对多工况的运行环境,提出了一种决策树结合神经网络的混合建模方法,有效地对各种工况做出识别并剔除掉大的扰动因素,极大改善了诊断模型的泛化性能和动态辨识能力。这一混合策略为发电生产过程的在线监测和故障诊断问题提供了一种新的解决思路。 The water-cooling system is very important for the safe operation of generator. The water leakage detection of the system is typically a problem of weak signal extraction under strong disturbances. Considering the multi-course running environments, this paper puts forward a hybrid approach combining the artificial neural networks(ANN) method and the decision tree (DT) method. It can effectively recognize current operation mode and remove some disturbances which improves the model' s ability of generalization and dynamic recognition greatly. The hybrid strategy provides a new solution to the problem of condition monitoring and fault diagnosis in the course of power generation.
出处 《水力发电》 北大核心 2006年第8期50-52,共3页 Water Power
关键词 水冷系统 渗漏监测 神经网络 决策树 混合建模 water cooling system leakage detection neural networks decision tree hybrid modeling
  • 相关文献

参考文献8

二级参考文献37

  • 1李舜酩.谐波小波包方法及其对转子亚频轴心轨迹的提取[J].机械工程学报,2004,40(9):133-137. 被引量:26
  • 2Liu Xiao Ting,The Sludy of Diagnostic Technology Applying on Operating Unit Equipment in Water Power Station [A].Proceeding of XVII IAHR Symposium[C]. Beijing,1994,1321-1332. 被引量:1
  • 3Liu Xiao Ting,A New Mode of Condition Monitoring and Diagnostic for operating unit [A]. in:Proceeding of XIX IAHR Symposium[C]. Singapore,1998,576. 被引量:1
  • 4Quinlan J R. C4.5: Programs for MachineLearning [M]. Morgan Kauffman, 1993. 被引量:1
  • 5Yoshimitsu Kudoh, Makoto Haraguchi. An Appropriate Abstraction for Constructing a Compact Decision Tree [M]. Springer-Verlag Berlin Heidelberg,2000. 被引量:1
  • 6Sonajharia Minz, Rajni Jain. Rough Setbased Decision Tree Model for Classification[M]. Springer-Verlag Berlin Heidelberg, 2003. 被引量:1
  • 7B Chandra, Sati Mazumdar, Vincent Arena, et al. Elegant Decision Tree Algorithm for Classification in Data Mining[C].Proceedings of the 3th International Conference on Web Information Systems Engineering, 2002. 被引量:1
  • 8Khaled Alsabti, Sanjay Ranka, Vineet Singh. CLOUDS: A Decision Tree Classifier for Large Datasets[C]. 4th International Conference on Knowledge Discovery and Data Mining, 1998. 被引量:1
  • 9Zhiwei Fu. Using Genetic Algorithms-based Approach for Better Decision Trees: A Computational Study[M].Springer-Verlag Berlin Heidelberg, 2002. 被引量:1
  • 10Say Wei FOO, Eng Guan LIM. Speaker Recognition Using Adaptively Boosted Decision Tree Classifier[C].Acoustics, Speech, and Signal Processing, 2002. Proceedings(ICASSP'02) IEEE International Conference on,Volume1,2002. 被引量:1

共引文献121

同被引文献3

  • 1Haykin S.Neural networks:a comprehensive foundation:2nd Edition[M].北京:清华大学出版社,1999. 被引量:1
  • 2Smola A J,Scholkopf B.A tutorial on support vector regression[J].Statistics and Computing,2004,14(3):199-222. 被引量:1
  • 3Suykens J A K,Brabanter J D.Lukas L,et al.Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocomputing,2002,48(1-4):85-105. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部