期刊文献+

利用局部拓扑信息发现模糊社团结构 被引量:1

Discovering Fuzzy Community Structure Using Local Network Topology Information
下载PDF
导出
摘要 根据网络节点的局部拓扑信息,给出了节点与社团的相似度度量方法,提出了一种新的发现网络模糊社团结构的粒子群算法。该算法在迭代过程中依据节点对不同社团的相似度来不断调整粒子的位置向量,减少了搜索的盲目性,提高了搜索效率。对不同规模的计算机生成网络和真实网络进行测试,实验结果表明,该方法能有效、快速的给出网络的模糊社团结构。 An important problem of using evolutionary algorithm to discover community structure in complex networks is how to reduce the search space of network partitions for speeding up convergence.This paper presents an approach to similarity measurement between nodes and communities based on the local topology information of network nodes,and proposes a new particle swarm optimization algorithm to detect fuzzy communities of network.In the iterative process of algorithm the position vector of particle is modified according to similarity degrees between nodes and communities to promote search efficiency.Experiments on various scale computer-generated networks and real world networks show the capability and efficiency of the method to find the fuzzy community structure of network.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第1期73-79,共7页 Journal of University of Electronic Science and Technology of China
基金 四川省教育厅科研资助项目(2006B064)
关键词 复杂网络 相异性指数 模糊社团结构 局部拓扑信息 粒子群算法 complex network dissimilarity Index fuzzy community structure local network topology information particle swarm optimization
  • 相关文献

参考文献2

二级参考文献16

  • 1杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 2GareyMR, Johnson DS. Computers and Intractability:AGuide to the Theory of NP-Completeness. San Franeisco: W H Freeman, 1979 被引量:1
  • 3Wu F, Huberman B A. Finding communities in linear time: A physics approach[J]. Euro Phys J B, 2003,38: 331-338 被引量:1
  • 4Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying communities in networks, cond-mat/0309488. 2004 被引量:1
  • 5Kemighan B W, Lin S. An efficient heuristic procedure for partitioning graphs [J]. Bell System Technical Journal, 1970,49:291-307 被引量:1
  • 6Girvan M, Newman M E J. Community structure in social and biological networks [J]. In: Proc Natl Acad,2002, 99: 7821-7826 被引量:1
  • 7Newman M E J, Girvan M. Finding and evaluating community structure in networks [J]. Physical Review E, 2004,69:026113 被引量:1
  • 8Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying communities in networks, eond-mat/0309488. 2004 被引量:1
  • 9Duch J, Arenas A. Community detection in complex networks using extremal optimization. Phys Rev E 72,2005:027104 被引量:1
  • 10Kennedy J, Eberhart R C, Particle swarm optimization[C]. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol 4, IEEE Press,1942-1948 被引量:1

共引文献19

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部