期刊文献+

无公害害虫治理策略的数学研究 被引量:12

Mathematical Study on Non-polluted Strategy for Pest Control
原文传递
导出
摘要 首先应用状态脉冲反馈控制的理论,建立了无公害害虫治理中的数学模型,并且对所建的模型进行定性分析,利用微分方程几何理论中后续函数法得到系统的阶一周期解存在的充分条件,证明该周期解是轨道渐近稳定的,同时利用数值模拟的手段讨论了系统在害虫治理中的应用意义. In this paper,a non-polluted pest control model is firstly established by using statedependent impulses feedback control theory.Further,by using successor function of differential equation geometry rules,the sufficient conditions for the existence and orbitally asymptotic stability of first order periodic solution are obtained.Finally,Numerical results show that the system we considered are full of application meaning on the pest control management.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第2期144-150,共7页 Mathematics in Practice and Theory
基金 福建省自然科学基金(JB09078) 福建师范大学闽南科技学院青年骨干教师重点培养对象(mkq201006)
关键词 无公害害虫治理 状态脉冲微分方程 阶一周期解 后继函数 Non-polluted Strategy for Pest Control state-dependent impulses differential equation first order periodic solution successor function
  • 相关文献

参考文献9

  • 1陈兰荪.数学生态模型学和研究方法[M].北京:科学出版社,1988. 被引量:3
  • 2DeBach P, Rosen D. Biological Control by Natural Enemies[M]. Cambridge University Press.Cambridge. 1991. 被引量:1
  • 3Grasman J, Van Herwaarden O A. A two-component model of host-parasitoid interactions.determination of the size of inundative releases of parasitoids in biological pest control[J]. Math Biosci, 2001(169): 207-216. 被引量:1
  • 4Kidd N A and Jervis M A. Population dynamics. Insect Natural Enemies[M]. Jervis Aand Kidd N A, Chapman and Hall. London, 1996. 被引量:1
  • 5Van Lenteren J C. Measures of success in biological control of anthropoids by augmentation of natural enemies[J]. Wratten. S. Gurr.G. (ed), Measures of Success in Biological Contr01[M]. Kluwer Academic Publishers, Dordrdcht.2000. 被引量:1
  • 6Wright R J. Achieve Biological Pest Control By Augmenting Natural Enemy Populations[M]. Crop Watch. University of Nebraska. March, 1995. 被引量:1
  • 7唐三一..脉冲半动力系统及其在生物资源管理中的应用研究[D].中国科学院数学与系统科学研究院,2003:
  • 8Zeng G, chen L. Existence of periodic solution of order one of planar impulsive autonomous system[J]. Journal of computational and Applied Mathematiocs, 2006(186): 466-481. 被引量:1
  • 9Parvel S, Drumi D. Orbital stability of the periodic solutions of autonomous systems with impulse effect[J]. Publ RIMS. Kyoto Untv, 1998(25): 321-346. 被引量:1

共引文献2

同被引文献82

引证文献12

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部