期刊文献+

潜伏类和移出类具有传染性的SEIR模型的渐近性分析 被引量:6

Asymptotical analysis of SEIR model with infectious force in latent and immune periods
下载PDF
导出
摘要 研究了一类潜伏类和移出类均具有传染力的SEIR传染病模型,得到了疾病流行与否的阈值:基本再生数R_0.运用Liapunov函数方法,证明了当R_0<1时,无病平衡点E_0全局渐近稳定,疾病最终消失;利用Hurwitz判据定理,证明了当R_0>1时,E_0不稳定,地方病平衡点E*局部渐近稳定;当因病死亡率和剔除率为零时,地方病平衡点E*全局渐近稳定,疾病持续存在.最后,进行了计算机数值模拟来进一步验证理论结果的正确性. A type of SEIR epidemic model with infective force in the latent and immune period was studied.And the threshold,basic reproductive number R_0 which determines whether a disease is extinct or not,was obtained.By using the Liapunov function method,it was proved that the disease-free equilibriumE_0 is globally asymptotically stable and that the disease eventually goes away if R_0<1.It was also proved that in the case where R_0>1,E_0 is unstable and the unique endemic equilibriumE*is locally asymptotically stable by Hurwitz criterion theory.It was shown that when disease-induced death rate and elimination rate are zero,the unique endemic equilibriumE*is globally asymptotically stable and the disease persists.Finally,numerical simulation was given to illustrate the theoretical analysis.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2016年第2期95-103,共9页 JUSTC
基金 国家自然科学基金(11201277 11402054) 安徽省自然科学基金重点项目(KJ2015A308 KJ2015A331)资助
关键词 基本再生数 平衡点 全局渐近稳定性 LIAPUNOV函数 轨道渐近稳定 basic reproductive number equilibrium global asymptotically stability Liapunov function orbital asymptotical stability
  • 相关文献

参考文献6

  • 1马知恩,周义仓编著..常微分方程定性与稳定性方法[M].北京:科学出版社,2001:311.
  • 2Michael Y. Li,John R. Graef,Liancheng Wang,János Karsai.Global dynamics of a SEIR model with varying total population size[J]. Mathematical Biosciences . 1999 (2) 被引量:3
  • 3Michael Y. Li,James S. Muldowney.Global stability for the SEIR model in epidemiology[J]. Mathematical Biosciences . 1995 (2) 被引量:2
  • 4Michael Y. Li,James S. Muldowney.A geometric approach to global-stability problems. SIAM Journal on Mathematical Analysis . 1996 被引量:3
  • 5Hale J K.Ordinary Differential Equations. . 1969 被引量:3
  • 6James S. Muldowney.Compound matrices and ordinary differential equations. Rocky Mt. J. Math . 1990 被引量:2

共引文献5

同被引文献29

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部