摘要
The hepatoprotective and antioxidant activities of the n-butanol extract of Rubus parvifolius L. (RPL), a widely used medicinal plant, were evaluated. Results demonstrated that RPL extract possessed pronounced hepatoprotective effects against carbon tetrachloride (CCI4)-induced hepatic injury in mice, which was at least partially attributed to its strong antioxidant capacity. Treatment with RPL extract markedly attenuated the increases in serum alanine ami- notransferase (ALT) and aspartate aminotransferase (AST) levels caused by CCI4 intoxication. It also significantly prevented the decrease in superoxide dismutase (SOD) activity and the increase in malondialdehyde (MDA) content of liver tissue. Meanwhile, histopathological changes of hepatic damage were also remarkably ameliorated. Phytochemical analysis based on high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) revealed the presence of various phenolic compounds, including caffeic acid conjugates, ellagic acid glycosides, and flavonol glycosides, which might be responsible for the hepatoprotective and antioxidant activities of RPL.
The hepatoprotective and antioxidant activities of the n-butanol extract of Rubus parvifolius L. (RPL), a widely used medicinal plant, were evaluated. Results demonstrated that RPL extract possessed pronounced hepatoprotective effects against carbon tetrachloride (CCl4)-induced hepatic injury in mice, which was at least partially attributed to its strong antioxidant capacity. Treatment with RPL extract markedly attenuated the increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels caused by CCl4 intoxication. It also significantly prevented the decrease in superoxide dismutase (SOD) activity and the increase in malondialdehyde (MDA) content of liver tissue. Meanwhile, histopathological changes of hepatic damage were also remarkably ameliorated. Phytochemical analysis based on high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) revealed the presence of various phenolic compounds, including caffeic acid conjugates, ellagic acid glycosides, and flavonol glycosides, which might be responsible for the hepatoprotective and antioxidant activities of RPL.
基金
supported by the National Natural Science Foundation of China (Nos. 21072174, 30873430, and 30973933)
the Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talent Fellowship, China