期刊文献+

几种多值序及其在拓扑中的应用 被引量:3

Some kinds of many-valued orders and their application in topology
下载PDF
导出
摘要 讨论了几种常见的多值序结构及其在拓扑中的应用。具体来说,对任意完备剩余格(Ω,*,1),从多值序的角度出发构造了Ω-滤子Monad(FΩ,η,μ),并据此给出了强Ω-拓扑的邻域结构,并展示了拓扑、序和范畴三种不同的结构之间的密切联系。 In this paper,some kinds of many-valued orders are studied and their application in topology is investigated.In precisely,for an arbitrary complete residuated lattice(Ω,*,1) ,the Ω-filter Monad(FΩ,η,μ) is constructed from the view-point of many-valued order and then the negighborhood system of strong Ω-topology is presented.This shows the closed interrelationship between topologcial sturcutre,ordered structure and category.
作者 李令强 金秋
出处 《计算机工程与应用》 CSCD 北大核心 2011年第2期38-40,共3页 Computer Engineering and Applications
基金 教育部科学技术研究重点项目(No.206089) 聊城大学博士基金
关键词 多值序 Monad对角运算 多值拓扑 多值滤子 many-valued orders Monad diagonal operator many-valued topology many-valued filter
  • 相关文献

参考文献10

  • 1Zadeh L.Fuzzy sets[J].Information and Control,1965,8:338-353. 被引量:1
  • 2Hohle U.Fuzzy real numbers as Dedekind cuts with respect to a multiple-valued logic[J].Fuzzy Sets and Systems, 1987,24(3): 263-278. 被引量:1
  • 3Adamek J, Herrlich H, Strecker G E.Abstract and concrete cate-ories[M].New York: Wiley, 1990. 被引量:1
  • 4Hohle U.Many valued topology and its applicafions[M].Boston: Kluwer Academic Publishers, 2001. 被引量:1
  • 5赖洪亮..Ω-范畴序结构性质的研究[D].四川大学,2007:
  • 6李令强,金秋.多值滤子及其应用[J].山东大学学报(理学版),2007,42(12):29-32. 被引量:6
  • 7Li Lingqiang,Zhang Dexue.On the relationship between limit spaces, many valued topological spaces and many valued preordered sets[J].Fuzzy Sets and Systems,2009,160(9) : 1204-1217. 被引量:1
  • 8Zhang Dexue.An enriched category approach to many valued topology[J].Fuzzy Sets and Systems,2007,158(4):349-366. 被引量:1
  • 9Kent D C, Richardson G D.Convergecne spaces and diagonal conditions[J].Topology and its Applications, 1996,70:167-174. 被引量:1
  • 10Jager G.Pretopological and topological lattice-valued conver- gence spaces[J].Fuzzy Sets and Systems,2007,158(4):424-435. 被引量:1

二级参考文献4

  • 1HOHLE U, SOSTAK A. Axiomatic foundition of fixed-basis fuzzy topology[ M]. Mathematics of Fuzzy Sets, Logic,Topology and Measure Theory, Handbook Series: Vol.3. Boston: Kluwer Academic Publishers, 1999. 被引量:1
  • 2ZHANG D. An enriched category approach to many-valued topology[J]. Fuzzy Sets and Systems, 2007, 158:349-366. 被引量:1
  • 3HOHLE U. Commutative, residuated l-monoids[M]. Non-classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory. Dordrecht: Kluwer, 1995. 被引量:1
  • 4GIERZ G, HOFMANN K H, KEIMEL K, et al. Continuous lattices and domains[M]. Cambridge: Cambridge University Press, 2003. 被引量:1

共引文献5

同被引文献41

  • 1Jager G.A category of L-fuzzy convergence spaces[J].Quaes- tiones Mathematicae, 2001 (24) : 501-517. 被引量:1
  • 2Preuss G.Foundations of topology[M].London: Kluwer Academic Publishers, 2002. 被引量:1
  • 3Hohle U, Sostak A P.Mathematics of fuzzy sets, logic, to- pology and measure theory[M].Boston: Kluwer Academic Publishers, 1999. 被引量:1
  • 4Jager G.Pretopological and topological lattice-valued con- vergence spaces[J].Fuzzy Sets and Systems, 2007, 158: 424-435. 被引量:1
  • 5Yao Wei.On many-valued stratified L-fuzzy convergence spaces[J].Fuzzy Sets and Systems, 2008,59:2503-2519. 被引量:1
  • 6Li Lingqiang,Jin Qiu.On adjunctions between Lim, SL-Top, and SL-Lim[J].Fuzzy Sets and Systems,2011,182:66-78. 被引量:1
  • 7Li Lingqiang,Jin Qiu.On stratified L-convergence spaces: Pretopological axioms and diagonal axioms[J].Fuzzy Sets and Systems, 2012,204 : 40-52. 被引量:1
  • 8Fang Jinming.Stratified L-ordered convergence structures[J]. Fuzzy Sets and Systems,2010,161:2130-2149. 被引量:1
  • 9Jager G.Gahler's neighbourhood condition for lattice-valued convergence spaces[J].Fuzzy Sets and Systems,2012,204: 27-39. 被引量:1
  • 10Flores P V, Mohapatra R N, Richardson G.Lattice-valued spaces: Fuzzy convergence[J].Fuzzy Sets and Systems, 2006, 157 : 2706-2714. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部