期刊文献+

基于VOF的模具结构化表面软性磨粒流数值模拟 被引量:12

Softness Abrasive Flow Numerical Simulation for VOF Based Structural Surfaces of Mould
下载PDF
导出
摘要 为了提高模具结构化表面光整加工的表面质量,通过流体体积模型和标准k-ε模型相结合的计算方法,以之字形微型流道为研究对象,对模具微型流道内部的软性磨粒流流场进行数值模拟。结果表明:随着入口流速的提高,管道内的磨粒流的平均速度也随之增大,有利于近壁区磨粒流与流道壁面的相互作用,从而提高磨粒流的加工效率。同时模具微型流道的形状和结构对磨粒流加工也有重要影响。当微型流道直径为2mm、入口速度为10m/s、湍动能为0.4m2/s2、湍流耗散率为19.8m2/s3时,与其他几组工艺参数相比,微型流道内轴向、切向速度分布及湍动能分布等更加均匀,能够得到较高的加工效率和表面纹理形态。数值模拟结果为深入研究软性磨粒流的基本规律提供了一种理论工具。 In order to improve the manufacturing quality in the finishing procedure of mould structural surface machining,by combining VOF model and standard k-ε turbulent model as its computational method,the numerical simulation of softness abrasive flow field in micro mould channel was carried out in a zigzag-shaped micro channel model.The computational results turn out that the average velocity of the abrasive particles grows along with the rising of the inlet velocity,which enhances the interaction between the abrasive particles and the channel surfaces,and consequently improves the machining efficiency.Meanwhile,the shape and structure of mould structural channel can also be very influential in abrasive flow machining.Comparing with other technological parameters,the model with diameter of 2mm,inlet velocity of 10m/s,turbulent kinetic energy of 0.4m2/s2,and turbulent dissipation rate of 19.8m2/s3 performs better in both axial and tangential velocity distribution and the turbulent kinetic energy distribution,which makes it feasible to reach a higher processing efficiency and a better surface texture pattern.The results of numerical simulation provide a theory basis for the further study of basic flow rules of softness abrasive flow.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2011年第3期334-339,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50875242 50905163) 浙江省自然科学基金资助项目(Z107517 1090836)
关键词 流体体积模型 结构化表面 软性磨粒流 数值模拟 volume of fluid model(VOF) structural surface softness abrasive flow numerical simulation
  • 相关文献

参考文献17

  • 1Shiou F J,Ciou H S. Ultra--precision Surface Finish of the Hardened Stainless Mold Steel Using Vibration- assisted Ball Polishing Process[J]. International Journal of Machine Tools and Manufacture, 2008,48(7/8): 721-732. 被引量:1
  • 2Gianpaolo S, Roberto M, Gianmaria C. A Surface Rough--ness Predictive Model in DeterministicPolishing of Ground Glass Moulds[J]. International Journal of Machine Tools and Manufacture, 2009,49 (1) :1-7. 被引量:1
  • 3Brinksmeier E. Polishing of Structured Molds [J]. CIRP Annals-- Manufacturing Technology, 2004,53 (1) :247-250. 被引量:1
  • 4Brinksmeier E. Finishing of Structured Surfaces by Abrasive Polishing[J]. Precision Engineering, 2006, 30(3) :325-336. 被引量:1
  • 5Rhoads L J. Abrasive Flow Machining:a Case Study[J]. Journal of Materials Processing Technology, 1991,28(2) :107-116. 被引量:1
  • 6Rhoads L J. Abrasive Flow Machining[J]. Manufac turing Engineering, 1988,101 : 75-78. 被引量:1
  • 7Jain R K,Jain V K,Dixit P M. Modling of Material Removal and Surface Roughness in Abrasive Flow Machining Process[J]. International Journal of Machine Tools & Manufacture, 1999,39 (12) :1903 - 1923. 被引量:1
  • 8Patankar S V. Numerical Heat Transfer and Fluid Flow[M]. New York: Megraw-- Hil, 1980. 被引量:1
  • 9江帆,黄鹏编著..Fluent高级应用与实例分析[M].北京:清华大学出版社,2008:329.
  • 10Verseeg H K, Malalasekera W. An Introduction to Computationl Fluid Dynamics: the Finite Volume Method[M]. New York:Wiley, 1995. 被引量:1

二级参考文献22

  • 1Kordonski W, Shorey A,Sekeres A. New Magnetically Assisted Finishing Method: Material Removal with Magnetorheological Fluid Jet[J]. SPIE, 2004, 5180:107-114. 被引量:1
  • 2Tricard M, Kordonski W, Shorey A. Magnetorheological Jet Finishing of Conformal, Freeform and Steep Concave Optics [J]. Annals of the CIRP, 2006,55(1) :309-312. 被引量:1
  • 3Silvia Maria BOOIJ. Fluid Jet Polishing-possibilities and Limitations of a New Fabrication Technique [D]. Netherlands:Delft University, 2003. 被引量:1
  • 4Booij S M, van Brug H, Braat J J M. Nanometer Deep Shaping with Fluid Jet Polishing[J].Optical Engineering, 2002,41(8) : 1926-1931. 被引量:1
  • 5Christakis N Allsop, N W H, et al. A volume of fluid numerical model for wave impacts at coastal structures[J]. Proceedings of the Institution of Civil Engineers: Water and Maritime Engineering, 2002, 154 (3): 159-168. 被引量:1
  • 6Olive W Fhnle,Hedser van Brug, Hans J Frankena. Fluid jet polishing of optical surfaces[J]. APPLID OPTICS,1998,37(28):6671-6673. 被引量:1
  • 7Olive W Fhnle. Fluid Jet Polishing:removal process analysis[J]. SPIE Proceedins on Optical Fabrication and Testing,1999,3739:68-77. 被引量:1
  • 8T Mabrouki, K Raissi, A Cornier. Numerical simulation and experimental study of the interaction between a pure high-velocity waterjet and targets:contribution to investigate the decoating process[J]. Elsevier Science, 2000,239:260-273. 被引量:1
  • 9Hong-Hui Shi. The measurement of impact pressure and solid surface response in liquid-solid impact up to hypersonic range[J]. Elsevier Science, 1995,186-187:352-359. 被引量:1
  • 10JO欣茨.湍流(下册)[M].北京:科学出版社,1987.135-249. 被引量:1

共引文献89

同被引文献136

引证文献12

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部