摘要
在这篇文章中,我们首先介绍群余分次乘子Hopf代数Galois对象的定义,然后给出通过交叉作用π来构造群余分次乘子Hopf代数Galois对象的方法.设G是群,(,Δ)是G-余分次代数量子群(A,△)的变形.若(X,α)是(A,△)的左Galois对象,定义α_(p,q):X_(pq)→M(pX_q),α_(p,q)=(πqi)α_q^(-1)p^(-1)q,q^(-1),则(X,α)是变形(,Δ)的左Galois对象,其中X_p=X_(p^(-1)),_q=A_(q^(-1)).同时,我们也研究了Galois对象的一些性质.
In this paper,we first introduce the definition of Galois objects for group-cograded algebraic quantum groups,then give a method to construct the Galois object for a group-cograded algebraic quantum group by the crossing actionπ.Let G be a group,(A,△) be the deformation of a G-cograded algebraic quantum group(A,△). If(X,α) is a left Galois object for(A,△),defineα_(p,q):X_(pq)→M(A_pX_q),by α_(p,q) =(π_qi)α_(q^(-1)p^(-1)q,q^(-1,)) then(X,α) is a left Galois object for the deformation (A,△),where X_p = X_(p^(-1)) and A_q = A_(q^(-1)).We also consider some properties of the Galois objects.
出处
《南京大学学报(数学半年刊)》
CAS
2010年第2期174-184,共11页
Journal of Nanjing University(Mathematical Biquarterly)