期刊文献+

乘子Hopf代数的L-R Smash余积

L-R Smash Coproducts for Multiplier Hopf Algebras
下载PDF
导出
摘要 设A是正则乘子Hopf代数,R是A-双余模代数,首先定义了A-双余模双代数,并利用它构造了L-R Smash积的对偶形式,即R(?)A上一种非平凡的乘子Hopf代数结构,称之为L-R Smash余积.然后给出了L-R Smash余积上的积分和*-结构. Let A be a regular multiplier Hopf Mgebra and R be an A-bicomodule algebra. The authors define an A-bicomodule bialgebra and construct a non-trivial multiplier Hopf algebra on R^A, called an L-R smash coproduct which is the duM of the L-R smash product. The integrals and ,-operators on the L-R smash coproduct are also obtained.
出处 《数学年刊(A辑)》 CSCD 北大核心 2013年第6期737-746,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11101128) 河南科技大学博士科研启动基金(No.09001303)的资助
关键词 乘子Hopf代数 余作用 双余模双代数 L-R SMASH余积 Multiplier Hopf algebra, Coaction, Bicomodule bialgebra, L-Rsmash coproduct
  • 相关文献

参考文献15

  • 1Bieliavsky P, Bonneau P, Maeda, Y. Universal deformation formulae, symplectic Lie groups and symmetric spaces [J]. Pacific J Math, 200?, 230(2):41-57. 被引量:1
  • 2Bieliavsky P, Bonneau P, Maeda Y. Universal deformation formulae for three- dimensional solvable Lie groups [J]. Lecture Notes in Physics, 2005, 662:127-141. 被引量:1
  • 3Bonneau P, Gerstenhaber M, Giaquinto A, et al. Quantum groups and deformation quantization: Explicit approaches and implicit aspects [J]. J Math Phys, 2004, 45:3703- 3741. 被引量:1
  • 4Bonneau P, Sternheimer D. Topological Hopf algebras, quantum groups and deforma- tion quantization [J]. Lect Notes Pure Appl Math, 2005, 239:55-70. 被引量:1
  • 5Panaite F, Oystaeyen F V. L-R-smash product for (quasi) Hopf algebras [J]. J Alg, 2007, 309:168-191. 被引量:1
  • 6Van Daele A. Multiplier Hopf algebras [J]. Transactions of the American Mathematical Society, 1994, 342(2):323-366. 被引量:1
  • 7Drabant B, Van Daele A, Zhang Y. Actions of multiplier Hopf algebras [J]. Comm Alg, 1999, 27(9):4117-4127. 被引量:1
  • 8Delvaux L. Semi-direct products of multiplier Hopf algebras: Smash coproducts [J]. Comm Alg, 2002, 30(12):5979-5997. 被引量:1
  • 9Van Daele A. An algebraic framework for group duality [J]. Adv Math, 1998, 140:323- 366. 被引量:1
  • 10Van Daele A, Wang S H. The Larson-Sweeldler theorem for multiplier Hopf algebras [J]. J Alg, 2006, 296:75-95. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部