期刊文献+

一种基于2D-PLDA和小波子带的虹膜识别算法 被引量:4

An kind of iris recognition algorithm based on 2D-PLDA and wavelet subband
原文传递
导出
摘要 近年来,基于线性判别分析(LDA)的图像模式识别方法研究越来越受到人们的关注。然而LDA方法自身存在的小样本难题,极大的影响了样本集特征矩阵的获取。研究者随后提出的2维线性分析(2D-LDA)在一定程度上解决了这个问题。在传统2D-LDA基础上,提出一种改进的2维线性分析方法——2D-PLDA,该方法通过对样本集进行预分类,使得散布矩阵更加合理;在此基础上将2D-PLDA和离散小波相结合,应用于虹膜识别中。实验结果证明,该算法在识别精度和计算复杂度等方面均较传统LDA和2D-LDA方法有很大的改进,同时采用小波的不同子带作为输入空间也在一定程度上增加了算法的鲁棒性。 In the last few years linear Discriminant Analysis ( LDA ) become more popular. But small sample size problem (SSSP) is always the biggest problem to perform it. In order to overcome this shortcoming, 2D-LDA is proposed. We improve 2D-PLDA by Pre-Clustering,which can make the distribution matrix precisely;then a new iris recognition arithmetic is proposed which is combined with 2D-PLDA and wavelet transform. In the experiment, preprocessing was performed at first,then we extract the feature vector from the known class sample by 2D-PLDA and wavelet. In the validation step,we use Euclidean distance and Hamming distance to find the K-nearest neighbor to decide which class the unknown sample belongs to. From the experiment result, we can conclude that, the proposed arithmetic can achieve higher recognition rate than traditional LDA and 2D-LDA, also the new arithmetic is simple in calculation. We use the different subbands as the input space of 2D-PLDA,so the robustness is enhanced.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第1期59-65,共7页 Journal of Image and Graphics
基金 辽宁省自然科学基金项目(20102123) 辽宁百千万人才工程项目(2008921036) 南京邮电学院图像处理与图像通信江苏省重点实验室开放基金项目(ZK207008)
关键词 虹膜识别 2D LDA 2D—PLDA 小波子带 特征矩阵 iris recognition 2D-LDA 2D-PLDA wavelet subband feature matrix
  • 相关文献

参考文献15

  • 1Shinyoung L, Kwanyong L, Okhwan B, et al. Efficient iris recognition through improvement of feature vector and classifier [J]. ETRI Journal, 2001, 23(2) :61-70. 被引量:1
  • 2明星,刘元宁,朱晓冬,徐涛.基于平移不变预处理的小波变换的虹膜识别算法[J].计算机研究与发展,2006,43(7):1186-1193. 被引量:5
  • 3Turk M, Pentland A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscienee, 1991,3 ( 1 ) :71-86. 被引量:1
  • 4Belhumeur P N, Jhespanha J P, Kriengman D J. Eigenfaces vs fisherfaces: recognition using class specific linear projection [ J]. IEEE Trans. Pattern Anal. Machine Intell. ,1997,19(7): 711- 720. 被引量:1
  • 5边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.
  • 6Swets D L, Weng J. Using discriminant eigenfeatures for image retrieval[ J]. IEEE Trans. Pattern Anal. Machine intell. ,1996, 18(8) :831 -836. 被引量:1
  • 7Huang Rui, sample size International Washington, Shah qing problem of Conference DC. USA, Lu Hanqing, et al. Solving the small LDA [ C ]// Proceedings of the 16th on Pattern Recognition ( ICPR ' 02 ). IEEE Computer Society, 2002:29-32. 被引量:1
  • 8Yu H, Yang J. A direct LDA algorithm for high-dimensional data with application to face recognition [ J ]. Pattern Recognition, 2001, 34(10) :2067-2070. 被引量:1
  • 9Yang Jian, Wang Jingyu. Why can LDA be performed in PCA transformed space? [ J ]. Pattern Recognition, 2003, 36 ( 2 ) : 563 -566. 被引量:1
  • 10郑宇杰,杨静宇,徐勇,於东军.一种基于Fisher鉴别极小准则的特征提取方法[J].计算机研究与发展,2006,43(7):1201-1206. 被引量:14

二级参考文献26

  • 1M. Turk, A. Pentland. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1) : 71-86 被引量:1
  • 2P. N. Belhumeur, J. P. Hespanha, D. J. Kriengrnan.Eigenfaces vs Fisherfaces: Recognition using class specific linear projection [J]. IEEE Trans. Pattern Anal. Machine Intell,1997, 19(7): 711-720 被引量:1
  • 3D. L. Swets, J. Weng. Using discriminant eigenfeatures for image retrieval [J]. IEEE Trans. Pattern Anal. Machine Intell,1996, 18(8): 831-836 被引量:1
  • 4L. F. Chen, H. Y. M. Liao, J. C. Lin, et al. A new LDA-based face recognition system which can solve the small sample size problem[J]. Pattern Recognition, 2000, 33(10) : 1713-1726 被引量:1
  • 5R. Huang, Q. S. Liu, H. Q. Lu, et al. Solving the small sample size problem of LDA [C]. The Proc. Int'l Conf. Pattern Recognition, Quebec, Canada, 2002. 29-32 被引量:1
  • 6J. Yang, J. Y. Yang. Why can LDA be performed in PCA transformed space [J]. Pattern Recognition, 2003, 36(2) : 563-566 被引量:1
  • 7J. C. Bezdek, J. Keller, R. Krishnapuram. Fuzzy Models and Algorithms for Pattern Recognition and Images Processing [M].San Francisco, CA: Kluwer Academic Publishers, 1999 被引量:1
  • 8J. M. Keller, M. R. Gray, J. A. Givens. A fuzzy k-nearest neighbor algorithm [J]. IEEE Trans. Syst., Man Cybernet,1985, 15(4): 580-585 被引量:1
  • 9ORL face database lOLl. http://www.uk. research.art.com/facedatabase.html, 2005-08-25 被引量:1
  • 10Z. Jin, J. Y. Yang, Z. S. Hu, et al. Face recognition based on the uncorrelated discriminant transformation[J]. Pattern Recognition, 2001, 34(7) : 1405- 1416 被引量:1

共引文献17

同被引文献93

  • 1李国宾,孟歆,关德林,魏海军.基于小波和分形提取磨粒图像特征参数的研究[J].内燃机学报,2006,24(5):476-479. 被引量:4
  • 2李岳,温熙森,吕克洪.基于核主成分分析的铁谱磨粒特征提取方法研究[J].国防科技大学学报,2007,29(2):113-116. 被引量:11
  • 3张学工.模式识别[M].3版.北京:清华大学出版社,2010. 被引量:26
  • 4Jain A K, Bolle R, Pankanti S. Biometrics: Personal Identifica?tion in Networked Society[M]. Norwell, Massachusetts, USA: Kluwer Academic Publishers, 1999: 1-16. 被引量:1
  • 5Wang L, Leedham G. Near-and far-infrared imaging for vein pat?tern biometrics[C]//Proceedings of the Video and Signal Based Surveillance. Sydney: IEEE Press, 2006: 52-57.[DOI : 10. 11091 AVSS. 2006. 80J. 被引量:1
  • 6Watanabe M. Palm Vein Authentication in Advances in Biomet?rics[M]. Heidelberg, Germany:Springer-Verlag, 2008 :75-88. 被引量:1
  • 7Zhang D, Guo Z, Lu G, et al. OnlineJoint palmprint and palm?vein verification[J]. Expert Systems with Applications, 2011, 38 (3) :2621-2631.[DOI: 10. 1016/j. eswa 2010. 08. 052J. 被引量:1
  • 8Zhang D, Kong W K, YouJ, et al. Online palmprint identifica?tion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (9) : 1041-1050.[DOI: 1O.1109/TPA?Ml.2003.1227981J. 被引量:1
  • 9Song W, Kim T, Kim H C, et al. A finger-vein verification sys?tem using mean curvature[J]. Pattern Recognition Letters, 2011, 32( 11): 1541-1547.[DOI: 1O.1016/j. patrec. 2011. 04. 021J. 被引量:1
  • 10Jain A, Hong L, Bolle R. On-line fingerprint verification[J] . Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1997, 19(4): 302-314.[DOI:I0.1109/34.587996J. 被引量:1

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部