期刊文献+

复合连通多孔钛体内成骨的实验研究

In vivo osteogenesis of interconnected porous titanium: An experimental study
下载PDF
导出
摘要 目的观察复合连通多孔钛的体内成骨能力。方法将三维连通多孔钛制成标准试件,浸泡于1.5倍模拟体液中使之复合类骨磷灰石。分别抽取5只新西兰大白兔骨髓各1.5ml,分离出骨髓基质干细胞后进行原代培养。将骨髓基质干细胞接种到多孔钛试件孔壁内,继续培养14d。应用扫描电镜观察成骨情况,然后将其植入兔右侧背肌内,左侧植入空白复合多孔钛试件作为对照。3周后取材进行组织学观察。结果将骨髓基质干细胞接种于复合IPT试件上培养2周后,在光镜及扫描电镜下可见骨髓基质干细胞在孔壁内黏附,增殖活跃。经体内培养3周后的复合多孔钛试件的组织学观察发现,种植有骨髓基质干细胞的复合IPT的孔壁内沉积了一薄层骨组织,而未种植该细胞的对照组样品中未发现有骨组织,其孔隙被大量的纤维组织和少量的肥大细胞等充填。结论预先在体外对复合多孔钛进行细胞接种明显提高了其在体内的成骨效果。 Objective To observe the in vivo osteogenesis of interconnected porous titanium(IPT).Methods Standard IPT samples were prepared and immersed in a 1.5-fold simulated body fluid to coat bonelike apatite on IPT.Bone marrow(1.5ml) was extracted from 5 rabbits to isolate bone mesenchymal stem cells(BMSC).BMSC were primarily cultured,inoculated into IPT samples,and cultured for 14 days.Osteogenesis was observed under a scanning electron microscope.Three weeks after BMSC were implanted into the right muscle pockets of rabbits and IPT samples were implanted into the left muscle pockets of rabbits,histological study was performed.Results Two weeks after BMSC were inoculated into the IPT samples,adhesion and active proliferation of BMSC were observed under optical and scanning electron microscope.Three weeks after IPT samples were cultured in vivo,histological study found that a thin layer of bone was deposited in the IPT samples with BMSC but no bone-like tissue in the IPT samples without BMSC.A lot of fibrous tissue and a small number of mast cells were found in holes of the IPT samples.Conclusion BMSC inoculated into IPT in vitro can significantly improve the osteogenesis in vivo.
出处 《军医进修学院学报》 CAS 2011年第1期67-69,共3页 Academic Journal of Pla Postgraduate Medical School
基金 国家"863"重大专项课题(2006AA02A136)~~
关键词 连通多孔钛 诱导成骨 骨髓基质干细胞 Interconnected Porous Titanium Osteogenetic Induction Marrow Stromal Cells
  • 相关文献

参考文献11

  • 1Cooper AI. Porous materials and supercritical fluids [ J ] . Advaced Materials, 2003, 15 ( 13 ) : 1049-1059. 被引量:1
  • 2Anglin EJ, Cheng L, Freeman WR, et al. Porous silicon in drug delivery devices and materials [ J ] . Adv Drug Deliv Rev, 2008, 60 ( 11 ) : 1266-1277. 被引量:1
  • 3Limnell T, Riikonen J, Salonen J, et al. Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles [ J ]. Int J Pharm, 2007, 343 ( 1-2 ) : 141-147. 被引量:1
  • 4Jalota S, Bhaduri SB, Tas AC. Osteoblast proliferation on neat and apatite-like calcium phosphate-coated titanium foam scaffolds [ J ] . Mater Sci Engineer, 2007, 27 ( 3 ) : 432-440. 被引量:1
  • 5Zhao J, Xiao S, Lu X, et al. A study of improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing [ J ] . Biomed Mater, 2006, 1 (4) : 188-192. 被引量:1
  • 6李众利,王岩,张国强,肖俊.新型三维连通多孔钛的制备及特性[J].生物骨科材料与临床研究,2007,4(1):1-4. 被引量:12
  • 7Kuboki Y, Takita H, Kobayashi D, et al. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures : topology of osteogenesis [ J ] . J Biomed Mater Res, 1998, 39 ( 2 ) : 190-199. 被引量:1
  • 8Hollinger JO, Battistone GC. Biodegradable bone repair materials. Synthetic polymers and ceramics [ J ] . Clin Orthop Relat Res, 1986, ( 207 ) : 290-305. 被引量:1
  • 9Grundel RE, Chapman MW, Yee T, et al. Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna[ J ]. Clin Orthop Relat Res, 1991, ( 266 ): 244-258. 被引量:1
  • 10Goshima J, Goldberg VM, Caplan AI. The osteogenic potential of cultured-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic block [ J ] . Clin Orthop Relat Res, 1991, (262) : 298-311. 被引量:1

二级参考文献18

  • 1严世贵 杨迪生 等.骨缺损修复研讨会纪要[J].中华骨科杂志,1994,14:636-636. 被引量:4
  • 2[1]Branemark R,Branemark PI,Rydevik B,Myers RR.Osseointegration inskeletal reconstruction and rehabilitation:a review.J Rehabil Res Dev,2001,38(2):175-81. 被引量:1
  • 3[2]Ping Huang,Yong Zhang,Kewei Xu,et al.Surface modification of titanium implant by microarc oxidation and hydrothermal treatment.J Biomed Mater Res,2004,70B:187-190. 被引量:1
  • 4[3]John B.Brunkski,David A.Puleo,Antonio Nanci.Biomaterial and biomechanics of Oral and Maxillofacial Implants:Current Status and Future Developments.Int J Oral Maxillofac Implants,2000,15:15-39. 被引量:1
  • 5[4]Wennerberg A,et al.A 1-year follow-up of implants of differing surface roughness in rabbit bone.Int J Oral Maxillofac Implants,1997,12:486 被引量:1
  • 6[5]Oyonarte R,Pilliar RM,Deporter D,et al.Peri-implant bone response to orthodontic loading:Part 2.Implant surface geometry and its effect on regional bone remodeling.Am J Orthod Dentofacial Orthop,2005,Aug;128(2):182-9. 被引量:1
  • 7[6]Bloebaum RD,Mihalopolulus NL,Jensen JW,et al.Postmortem analysis of bone growth into porous-coated acetabular components.J Bone J Surg,1997,79:1013-1022. 被引量:1
  • 8[7]Moroni A,Caja VL,Egger EL,et al.Histomorphometry of hydroxyapatite coated and uncoated porous titanium bone implants.Biomaterials,1994,15:926 被引量:1
  • 9[8]Cook SD,Thomas KA,Haddad RJ Jr.Histologic analysis of retrieved human porous-coated total joint components.Clin Orthop,1988,234:90-101. 被引量:1
  • 10[9]Jones LC,Kay JF,Freeburger Opishinski D,et al.Effect of hydroxyapatite coating on osteogenesis across an interface gap.Trans Orthop Res Soc,1991,16:549 被引量:1

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部