期刊文献+

新型三维连通多孔钛的制备及特性 被引量:12

New 3-D porous Ti manufacture and feature
下载PDF
导出
摘要 目的将具有良好生物相容性的钛制成类似松质骨结构,具有较高的强度和良好的生物性能的多孔材料。方法聚氨酯泡沫海棉做成孔径200~600μ,孔隙率50%~70%的三维连通多孔结构,作为钛粉载体。烧结,制成具有三维连通结构的多孔钛,测定生物力学性能。结果制成的多孔钛,具有三维、连通结构,与人股骨头松质骨结构相似。孔径300~600μ,孔隙率50%~60%。三维连通多孔钛的平均弹性模量为0.6~0.7GPa。结论①本实验三维连通多孔钛,达到了理想的孔径和孔隙率,弹性模量适中,可以广泛应用在骨科各个领域。②三维连通多孔钛还存在着连通孔的闭塞率较高,整体强度不均匀问题。 Objective Ti powder which has good biocompatibility is made as same as cancellous bone, the porous material which has higher strength and adequate elastic modulus. Method 3-D (three diamensions) PUR (polyurethane) is made, its' pore size 200 - 6000, interval porosity 50%- 70%, then Ti powder is combination with PUR. Ti powder is sintered 3-D porous Ti which has the same pore size and porosity as the 3-D PUR, then biomechanics performance of the 3-D porous Ti is measured by MTS 858 mini Bionix II machine. Result The structure of 3-D porous Ti made by solid phase sinter method is as similar as cancellous bone of hu- man's femoral head, its' pore size 300 - 600g, interval porosity 50%- 60%, elastic modulus 0.6 - 0.7GPa between cancellous bone and cortex bone. Conclusion New 3-D porous Ti which has ideal pore size, porosity and elastic modulus can be adapted generally in orthopaedics, but the character of the 3-D porous Ti should be improved including pore occlusio and intensity strength inequable.
出处 《生物骨科材料与临床研究》 CAS 2007年第1期1-4,共4页 Orthopaedic Biomechanics Materials and Clinical Study
基金 国家"863"重点课题课题编号2003AA205140
关键词 三维连通 多孔 特征 3-D Connectitvity Porous Ti (titanium) Character
  • 相关文献

参考文献15

  • 1[1]Branemark R,Branemark PI,Rydevik B,Myers RR.Osseointegration inskeletal reconstruction and rehabilitation:a review.J Rehabil Res Dev,2001,38(2):175-81. 被引量:1
  • 2[2]Ping Huang,Yong Zhang,Kewei Xu,et al.Surface modification of titanium implant by microarc oxidation and hydrothermal treatment.J Biomed Mater Res,2004,70B:187-190. 被引量:1
  • 3[3]John B.Brunkski,David A.Puleo,Antonio Nanci.Biomaterial and biomechanics of Oral and Maxillofacial Implants:Current Status and Future Developments.Int J Oral Maxillofac Implants,2000,15:15-39. 被引量:1
  • 4[4]Wennerberg A,et al.A 1-year follow-up of implants of differing surface roughness in rabbit bone.Int J Oral Maxillofac Implants,1997,12:486 被引量:1
  • 5[5]Oyonarte R,Pilliar RM,Deporter D,et al.Peri-implant bone response to orthodontic loading:Part 2.Implant surface geometry and its effect on regional bone remodeling.Am J Orthod Dentofacial Orthop,2005,Aug;128(2):182-9. 被引量:1
  • 6[6]Bloebaum RD,Mihalopolulus NL,Jensen JW,et al.Postmortem analysis of bone growth into porous-coated acetabular components.J Bone J Surg,1997,79:1013-1022. 被引量:1
  • 7[7]Moroni A,Caja VL,Egger EL,et al.Histomorphometry of hydroxyapatite coated and uncoated porous titanium bone implants.Biomaterials,1994,15:926 被引量:1
  • 8[8]Cook SD,Thomas KA,Haddad RJ Jr.Histologic analysis of retrieved human porous-coated total joint components.Clin Orthop,1988,234:90-101. 被引量:1
  • 9[9]Jones LC,Kay JF,Freeburger Opishinski D,et al.Effect of hydroxyapatite coating on osteogenesis across an interface gap.Trans Orthop Res Soc,1991,16:549 被引量:1
  • 10[10]Mckellop HA,Rostlund TV.The wear behavior of ion-implanted Ti-6Al-4V against UHMW polyethylene.J Biomed Mater Res,1990,24:1413-1425. 被引量:1

同被引文献144

引证文献12

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部