期刊文献+

平面弹性方程的非协调有限元分析 被引量:1

Nonconforming Finite Elements for the Equation of Planar Elasticity
下载PDF
导出
摘要 针对纯位移平面弹性问题,构造了两个无闭锁非协调有限元,单元对于Lamé常数λ一致收敛,证明了能量模和L2模误差分别为O(h2)和O(h3).最后给出了数值试验验证了理论分析的正确性. Two new locking-free nonconforming finite elements for the pure displacement planar elasticity problem were presented.Convergence rates of the elements were uniformly optimal with respect to λ.The energy norm and L^2 norm errors were proved to be O(h^2) and O(h^3),respectively.Lastly,numerical tests are carried out,which coincide with the theoretical analysis.
出处 《应用数学和力学》 EI CSCD 北大核心 2010年第12期1454-1464,共11页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10771198 11071226) 河南省国际科技合作项目
关键词 平面弹性 无闭锁 非协调有限元 planar elasticity locking-free nonconforming finite element
  • 相关文献

参考文献18

  • 1Arnold D N, Douglas J, Gupta C P. A family of higher order mixed finite element methods for plane elasticity [J ]. Numer Math, 1984, 45 ( 1 ) : 1-22. 被引量:1
  • 2Arnold D N, Falk R S. A new mixed formulation for elasticity[J]. NumerMath, 1988, 53( 1/ 2) : 13-30. 被引量:1
  • 3Babuska I, Suri M. Locking effects in the finite element approximation of elasticity problems [J].NumerMath, 1992, 62(1) : 439-453. 被引量:1
  • 4Scott L R, Vogelius M. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials[ J]. Math Model Numer Anal, 1985, 19( 1 ) : 113-143. 被引量:1
  • 5Vogelius M. An analysis of the p-version of the finite element method for nearly incompressi- ble materials,uniformly valid, optimal order estimates[ J]. Numer Math, 1983, 41( 1 ) : 39-53. 被引量:1
  • 6Stenberg R, Suri M. Mixed hp finite element methods for problems in elasticity and Stokes flow[Jl.NumerMath, 1995, 72(3): 357-389. 被引量:1
  • 7Stenberg R. A family of mixed finite elements for the elasticity problem [ J ]. Numer Math, 1988, 53(5) : 513-538. 被引量:1
  • 8Morley M. A mixed family of elements for linear elasticity[ J]. Math Comp, 1977, 55: 633-666. 被引量:1
  • 9Zhang Z. Analysis of some quadrilateral nonconforming elements for incompressible elasticity [J]. SIAM J Numer Anal, 1997, 34(2) : 640-663. 被引量:1
  • 10Brenner S C, Sung L Y. Linear fmite element methods for planar linear elasticity [ J ]. Math Comp, 1992, 59(220): 321-330. 被引量:1

二级参考文献1

  • 1明平兵.非协调元vs Locking问题,博士学位论文[M].中国科学院计算数学所,1999,12.. 被引量:1

共引文献23

同被引文献11

  • 1Wang J,Ye X. A weak Galerkin finite elementmethod for second order elliptic problems [J]. J.Comp Appl Math, 2013,241 : 103. 被引量:1
  • 2Wang J,Ye X. A weak Galerkin finite elementmethod for the Stokes equations [EB/OL]? arX-iv: 1302. 2707vl [math. NA]. 被引量:1
  • 3Mu L? Wang J,Wang Y, et al. A computationalstudy of the weak Galerkin method for second-or-der elliptic equations [ EB/OL ]. arXiv:1111. 0618vl,2011. 被引量:1
  • 4Mu L, Wang J, Wei G,et aL Weak Galerkinmethods for second order elliptic interface prob-lems [EB/OIJ. arXiv: 1201. 6438v2, 2012. 被引量:1
  • 5Mu L,Wang J,Wang Y,et al. A weak Galerkinmixed finite element method for biharmonic equa-tions [J]. Springer Proceedings in MathematicsStatistics,2013,45,247. 被引量:1
  • 6Mu L? Wang J, Ye X, et al. A numerical studyon the weak Galerkin method for the Helmholtz e-quation with large wave numbers [EB/OL]. arX-iv: 1111. 0671vl,2011. 被引量:1
  • 7Mu L,Wang J, Ye X. Weak Galerkin finite ele-ment methods on polytopal meshes [ EB/OL].arXiv: 1204. 3655v2. 被引量:1
  • 8Adams R A,Fournier J J F. Sobolev Spaces[M]. 2nd ed. New York: Academic Press,2003. 被引量:1
  • 9Shi Z C,Wang M. Finite element methods [M].Beijing: Science Press, 2014. 被引量:1
  • 10Brennera S C,Sung L. Linear finite elementmethods for planar linear elasticity [J]. MathComp, 1992,59: 321. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部