摘要
针对纯位移平面弹性问题,构造了两个无闭锁非协调有限元,单元对于Lamé常数λ一致收敛,证明了能量模和L2模误差分别为O(h2)和O(h3).最后给出了数值试验验证了理论分析的正确性.
Two new locking-free nonconforming finite elements for the pure displacement planar elasticity problem were presented.Convergence rates of the elements were uniformly optimal with respect to λ.The energy norm and L^2 norm errors were proved to be O(h^2) and O(h^3),respectively.Lastly,numerical tests are carried out,which coincide with the theoretical analysis.
出处
《应用数学和力学》
EI
CSCD
北大核心
2010年第12期1454-1464,共11页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(10771198
11071226)
河南省国际科技合作项目
关键词
平面弹性
无闭锁
非协调有限元
planar elasticity
locking-free
nonconforming finite element