期刊文献+

平面弹性问题的弱Galerkin有限元方法 被引量:2

Weak Galerkin finite element method for plane elasticity problems
下载PDF
导出
摘要 对平面弹性问题提出了弱Galerkin有限元方法.该方法引入了弱梯度和弱散度算子,用不连续的分片k次多项式逼近单元内部位移,并用不连续的分片k-1次多项式逼近单元边界位移.然后本文给出了最优误差估计,并以数值算例进行了验证. This paper applies a weak Galerkin (WG) finite element method to solve the plane elasticity problems. By introducing weak gradient and weak divergence operators, the method uses discontinuous piecewise polynomials of degree k to approximate the element interior displacements and discontinuous piecewise polynomials of degree k - 1 to approximate the interface displacements of finite element partition. Optimal-order error estimates are established. Numerical experiments confirm the theoretical results.
作者 刘邦繁
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期13-18,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(11171239)
关键词 弱Galerkin有限元 弹性问题 误差估计 Weak Galerkin finite element Elasticity problem Error estimate
  • 相关文献

参考文献12

  • 1Wang J,Ye X. A weak Galerkin finite elementmethod for second order elliptic problems [J]. J.Comp Appl Math, 2013,241 : 103. 被引量:1
  • 2Wang J,Ye X. A weak Galerkin finite elementmethod for the Stokes equations [EB/OL]? arX-iv: 1302. 2707vl [math. NA]. 被引量:1
  • 3Mu L? Wang J,Wang Y, et al. A computationalstudy of the weak Galerkin method for second-or-der elliptic equations [ EB/OL ]. arXiv:1111. 0618vl,2011. 被引量:1
  • 4Mu L, Wang J, Wei G,et aL Weak Galerkinmethods for second order elliptic interface prob-lems [EB/OIJ. arXiv: 1201. 6438v2, 2012. 被引量:1
  • 5Mu L,Wang J,Wang Y,et al. A weak Galerkinmixed finite element method for biharmonic equa-tions [J]. Springer Proceedings in MathematicsStatistics,2013,45,247. 被引量:1
  • 6Mu L? Wang J, Ye X, et al. A numerical studyon the weak Galerkin method for the Helmholtz e-quation with large wave numbers [EB/OL]. arX-iv: 1111. 0671vl,2011. 被引量:1
  • 7Mu L,Wang J, Ye X. Weak Galerkin finite ele-ment methods on polytopal meshes [ EB/OL].arXiv: 1204. 3655v2. 被引量:1
  • 8Adams R A,Fournier J J F. Sobolev Spaces[M]. 2nd ed. New York: Academic Press,2003. 被引量:1
  • 9Shi Z C,Wang M. Finite element methods [M].Beijing: Science Press, 2014. 被引量:1
  • 10Brennera S C,Sung L. Linear finite elementmethods for planar linear elasticity [J]. MathComp, 1992,59: 321. 被引量:1

二级参考文献17

  • 1Arnold D N, Douglas J, Gupta C P. A family of higher order mixed finite element methods for plane elasticity [J ]. Numer Math, 1984, 45 ( 1 ) : 1-22. 被引量:1
  • 2Arnold D N, Falk R S. A new mixed formulation for elasticity[J]. NumerMath, 1988, 53( 1/ 2) : 13-30. 被引量:1
  • 3Babuska I, Suri M. Locking effects in the finite element approximation of elasticity problems [J].NumerMath, 1992, 62(1) : 439-453. 被引量:1
  • 4Scott L R, Vogelius M. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials[ J]. Math Model Numer Anal, 1985, 19( 1 ) : 113-143. 被引量:1
  • 5Vogelius M. An analysis of the p-version of the finite element method for nearly incompressi- ble materials,uniformly valid, optimal order estimates[ J]. Numer Math, 1983, 41( 1 ) : 39-53. 被引量:1
  • 6Stenberg R, Suri M. Mixed hp finite element methods for problems in elasticity and Stokes flow[Jl.NumerMath, 1995, 72(3): 357-389. 被引量:1
  • 7Stenberg R. A family of mixed finite elements for the elasticity problem [ J ]. Numer Math, 1988, 53(5) : 513-538. 被引量:1
  • 8Morley M. A mixed family of elements for linear elasticity[ J]. Math Comp, 1977, 55: 633-666. 被引量:1
  • 9Zhang Z. Analysis of some quadrilateral nonconforming elements for incompressible elasticity [J]. SIAM J Numer Anal, 1997, 34(2) : 640-663. 被引量:1
  • 10Brenner S C, Sung L Y. Linear fmite element methods for planar linear elasticity [ J ]. Math Comp, 1992, 59(220): 321-330. 被引量:1

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部