摘要
对平面弹性问题提出了弱Galerkin有限元方法.该方法引入了弱梯度和弱散度算子,用不连续的分片k次多项式逼近单元内部位移,并用不连续的分片k-1次多项式逼近单元边界位移.然后本文给出了最优误差估计,并以数值算例进行了验证.
This paper applies a weak Galerkin (WG) finite element method to solve the plane elasticity problems. By introducing weak gradient and weak divergence operators, the method uses discontinuous piecewise polynomials of degree k to approximate the element interior displacements and discontinuous piecewise polynomials of degree k - 1 to approximate the interface displacements of finite element partition. Optimal-order error estimates are established. Numerical experiments confirm the theoretical results.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2016年第1期13-18,共6页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(11171239)