期刊文献+

一种随机相位估计简化EM算法

A Simplified EM Algorithm for Random-walk Phase Estimation
原文传递
导出
摘要 期望最大化(EM)算法在处理随机相位估计时是一个NP-完全问题,目前主要采用梯度算法来对其求解。但该方法存在计算量大、不易稳定且对相邻时刻估计结果依赖严重等问题。基于随机相位模型EM算法的因子图表示,提出了一种简化EM算法,其思想是只针对当前时刻进行独立的EM迭代计算,然后通过相邻相位偏转之间的关系对结果进行修正。仿真实验说明,该方法在减小计算量的同时,提高了算法性能。 Since the implementation of EM algorithm turns into a NP-complete problem in random-walk phase estimation,the gradient method is now exploited for its solution,which,however,is huge in calculation,prone to instability,and seriously dependent on the estimates of adjacent time slots.Based on the model factor graph,a simplified EM algorithm is proposed,with the idea to conduct the current EM iteration first and adjust the final estimate by the interrelations of the adjacent phases thereafter.Simulation shows that the proposed method could achieve both calculation reduction and performance improvement.
出处 《通信技术》 2010年第12期51-52,69,共3页 Communications Technology
关键词 随机相位估计 因子图 梯度算法 EM算法 random-walk phase estimation factor graph gradient algorithm EM algorithm
  • 相关文献

参考文献5

  • 1DAUWELS J,LOELIGER H A.Phase Estimation by Message Passing[C]//IEEE.2004 IEEE International Conference on Communications.USA:IEEE,2004:523-527. 被引量:1
  • 2DAUWELS J,KORL S,LOELIGER H A.Expectation Maximization as Message Passing[C]//SA.ISIT,2005.Proceedings International Symposium on Information Theory.Adelaide:SA,2005:583-586. 被引量:1
  • 3DAUWELS J H G.On Graphical Models for Communications and Machine Learning:Algerithms,Bounds,and Analog Implementation[D].[s.1.]:Series in Signal and Information Processing,2006:148-204. 被引量:1
  • 4DAUWELS J,KORL S,LOELIGER H A.Steepest Descent as Message Passing[C]//IEEE.2005 IEEE International Information Theory Workshop.USA:IEEE,2005:42-46. 被引量:1
  • 5FORNEY G D.Codes on Graphs:Normal Realizations[J].IEEE Transactions on Information Theory,2001,47(02):520-548. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部