期刊文献+

含噪独立分量分析的期望最大化算法 被引量:6

Expectation-Maximization Algorithm for Noisy Independent Component Analysis
下载PDF
导出
摘要 把期望最大化(EM)算法应用到含噪ICA模型中,即假定源信号具有统计独立性,并将其放在贝叶斯估计框架中,提出一种解决含噪独立分量分析(ICA)的期望最大化(EM)算法。在含噪ICA模型中,假设源信号的均值和方差服从更为一般的均匀分布,提出的EM算法将混合矩阵和超参数交替进行处理,可以有效地估计混合矩阵和超参数在一定模型下的模型参数,从而能够估计出源信号。仿真结果说明,该方法能够很好地解决含有噪声ICA模型下的盲源分离问题。 Expectation-maximization (EM) algorithm is applied in the noisy independent component analysis (ICA) model, i.e., the source signals are assumed statistical independent and formulated in a Bayesian estimation framework. A Bayesian approach with EM algorithm for noisy ICA is proposed. In the noisy ICA model, supposing the means and variances of source signals are uniform, the proposed EM algorithm can efficiently estimate the model parameters of the mixing matrix and hyperparameters under a certain model, and then estimate the sources by processing the mixing matrix and hyperparameters alternatively. Simulation results show that the proposed method can perform blind source separation (BSS) with the noisy ICA model.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第4期527-531,共5页 Journal of University of Electronic Science and Technology of China
关键词 贝叶斯方法 盲源分离 期望最大化算法 独立分量分析 Bayesian approach blind source separation expectation-maximum algorithm independent component analysis
  • 相关文献

参考文献14

  • 1NOVEY M, ADALI T. On extending the complex FastlCA algorithm to noncircular sources[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 2148-2154. 被引量:1
  • 2NESTA F, SVAIZER P, OMOLOGO M. Convolutive BSS of short mixtures by ICA recursively regularized across fi'equencies[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, (99): 1-1. 被引量:1
  • 3MIK_HAEL W B, RANGANATHAN R, YANG T. Complex adaptive ICA employing the conjugate gradient technique for signal separation in Time-Varying flat fading channels [J]. Circuits, Systems, and Signal Processing, 2010, 29(3): 469-480. 被引量:1
  • 4TANG Y, LI J. Normalized natural gradient in independent component analysis[J]. Signal Processing, 2010, 90(9): 2773 -2777. 被引量:1
  • 5洪英,韩周安.偏亚高斯语音信号有效分离ICA方法研究[J].电子科技大学学报,2008,37(5):693-697. 被引量:3
  • 6MOHAMMAD-DJAFARI A, KNUTH K. Bayesian approaches in handbook of blind Source sparation, independent component analysis and Applications[M]. [S.1.]: Academic Press, 2009. 被引量:1
  • 7KNUTH K H, TSE M K, CHOINSKY J, et al. Bayesian source separation applied to identifying complex organic molecules in space[C]//IEEE/SP 14th Workshop on Statistical Signal Processing. [S.I.]: IEEE, 2007:346-350. 被引量:1
  • 8DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the em algorithm[J]. Journal of the Royal Statistical Society: Series B, 1977, 39(1): 1-38. 被引量:1
  • 9MCLACHLAN KRISHNAN T. The EM algorithm and extensions[M]. New York: John Wiley & Sons, 1996. 被引量:1
  • 10SNOUSSI H, MOHAMMAD-DJAFARI A. Bayesian source separation with mixture of Gaussians prior for sources and Gaussian prior for mixture coefficients[C]// Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 20th International Workshop, /kip Conference Proceedings. Gif-sur-Yvette, France: American Institute of Physics, 2001. 被引量:1

二级参考文献11

  • 1张玲华,杨震,郑宝玉.基于模糊分类器及多层前馈神经网络混合结构的说话人辨认[J].通信学报,2005,26(11):68-75. 被引量:4
  • 2郑鹏,何同林,刘郁林,彭启琮,尤春艳.基于实数编码遗传算法的盲信源分离方法[J].电子科技大学学报,2006,35(3):295-297. 被引量:5
  • 3官金安,陈亚光.基于独立分量分析的VEP中N2成分提取[J].计算机工程,2006,32(12):29-31. 被引量:2
  • 4TANG C W, VANSLYKE S A, CHEN C H. Electroluminescence of doped organic thin films[J]. J Appl Phys, 1987, 51: 913-915. 被引量:1
  • 5HYVARINEN A, KARHUNEN J, OJA E. Independent component analysis[M]. New York: John Wiley & Sons, LTD, 2001. 被引量:1
  • 6LEE T W. Independent component analysis-theory and applications[M]. Norwell, MA: Kluwer, 1998. 被引量:1
  • 7SAWADA Hiroshi, et al. Blind extraction of dominant target sources using ICA and time-frequency masking[J]. IEEE Trans on Audio, Speech and Language Processing, 2006, 14(6): 2165-2173. 被引量:1
  • 8BELL A J, SEJNOWSKI T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995, 7(6): 1004-1034. 被引量:1
  • 9LEE T W, GIROLAMI M, SEJNOWSKI T J. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources[J]. Neural Computation, 1999, 11(3): 417-441. 被引量:1
  • 10OZEROV A, et al, Adaptation of Bayesian models for single channel source separation and its application to voice/music separation in popular songs[J]. IEEE Trans on Audio, Speech and Language Processing, 2007, 15(5): 1564-1578. 被引量:1

共引文献2

同被引文献40

  • 1万冬华,蒙华,刘唐志,李丕安.基于投影法的路线方案评价与应用[J].重庆交通大学学报(自然科学版),2012,31(6):1129-1132. 被引量:7
  • 2刘义,陈荦,景宁,刘露.海量空间数据的并行Top-k连接查询[J].计算机研究与发展,2011,48(S3):163-172. 被引量:7
  • 3Hyvarinen A,Karhunen J,oja Erkki.独立成分分析[M].周宗潭,等译.北京:电子工业出版社,2007. 被引量:14
  • 4Yang F S, Hong B . The theory and application of independence component analysis[M]. Beijing: Tsinghua University Press, 2006. 被引量:1
  • 5Knyazev G G Bocharov A V, Pylkova L V. Extraversion and fi'onto-posterior EEG spectral power gradient: an independent component analysis[J]. Biological psychology, 2012, 89(2): 515-524. 被引量:1
  • 6Hatam M, Sheikhi A, Masnadi-shirazi M A. Target detection in pulse-train mimo radars applying ica algorithms[J]. Progress In Electromagnetics Researeh, 2012, 122: 413-435. 被引量:1
  • 7Hyvarine A. Fast and robust fixed-point algorithms for independent component analysis[J]. Neural Networks, IEEE Transactions on, 1999, 10(3): 626-634. 被引量:1
  • 8Hyvarinen A. Gaussian moments for noisy independent component analysis[J]. Signal Processing Letters, IEEE, 1999, 6(6): 145-147. 被引量:1
  • 9Douglas S C, Cichocki A, Amari S. Bias removal technique for blind source separation with noisy measurements[J]. Electronics Letters, 1998, 34(14): 1379-1380. 被引量:1
  • 10Davies M. Identifiability issues in noisy ICA[J]. Signal Processing Letters, IEEE, 2004, 11(5): 470-473. 被引量:1

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部