期刊文献+

基于评论挖掘和用户偏好学习的评分预测协同过滤 被引量:3

Collaborative filtering based on opinion mining and user preference learning
下载PDF
导出
摘要 提出了一种新的方法挖掘评论中的文字信息,将评论对象被用户关注的层面发掘出来并评分,根据这些层面的分数以及用户过往的评分数据学习出用户的偏好,最后根据用户的偏好预测其他待评分对象的分数并产生推荐。实验结果表明,提出的方法在预测准确度方面较传统方法有一定程度的提高。 This paper proposed a new method that made use of text comments,discovered the aspects user matters,then predicated the rating for each aspect. It learned user's preference from the past rating regard to the aspect ratings. Using the user preference and the aspect ratings,it generated the predicated ratings. Experiments show that the proposed method is more accuracy than the classic ones.
作者 江海洋
出处 《计算机应用研究》 CSCD 北大核心 2010年第12期4430-4432,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60875044)
关键词 评论挖掘 层面发现 用户偏好 机器学习 评分预测 协同过滤 opinion mining aspect discovering user preference machine learning rating predication collaborative filtering
  • 相关文献

参考文献13

  • 1GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM,1992,35(12):61-70. 被引量:1
  • 2RESNICK P,IACOVOU N,SUCHAK M,et al.GroupLens:an open architecture for collaborative filtering of netnews[C] //Proc of ACM Conference on Computer-Supported Cooperative Work.New York:ACM Press,1994:175-186. 被引量:1
  • 3SHARDANAND U,MAES P.Social information filtering:algorithms for automating "word of mouth"[C] //Proc of ACM Conference on Human Factors in Computing Systems.New York:ACM Press,1995:210-217. 被引量:1
  • 4HILL W,STEAD L,ROSENSTEIN M,et al.Recommending and evaluating choices in a virtual community of use[C] //Proc of ACM Conference on Human Factors in Computing Systems.New York:ACM Press,1995:194-201. 被引量:1
  • 5BREESE J,HECHERMAN D,KADIE C.Empirical analysis of predictive algorithms for collaborative filtering[C] //Proc of the 14th Conference on Uncertainty in Artificial Intelligence.1998:43-52. 被引量:1
  • 6邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:559
  • 7LU Yue,ZHAI Cheng-xiang,SUNDARESAN N.Rated aspect summarization of short comments[C] //Proc of the 18th International Conference on World Wide Web.New York:ACM Press,2009:131-140. 被引量:1
  • 8SARWAR B M,KARYPIS G,KONSTAN J A,et al.Application of dimensionality reduction in recommender system:a case study[C] //Proc of Web KDD Workshop.2000. 被引量:1
  • 9AGGARWAL C C.On the effects of dimensionality reduction on high dimensional similarity search[C] //Proc of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.New York:ACM Press,2001. 被引量:1
  • 10CHANG Pi-chuan,GALLEY M,MANNING C.Optimizing Chinese word segmentation for machine translation performance[C] //Proc of the 3rd Workshop on Statistical Machine Translation.Morristown:Association for Computional Linguistics,2008:224-232. 被引量:1

二级参考文献13

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52. 被引量:1
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70. 被引量:1
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186. 被引量:1
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217. 被引量:1
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201. 被引量:1
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295. 被引量:1
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212. 被引量:1
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38. 被引量:1
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997. 被引量:1
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167. 被引量:1

共引文献558

同被引文献17

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2Li S, Zhou G, Wang Z, et al. Imbalanced sentiment classifica- tion. Proceeding of CIKM-11,2011. 被引量:1
  • 3Vincent P, Larochelle H. Extracting and composing robust features with denosing autocoders. The 25 th International Conference on Ma- chine Learning, 2008 : 1096-1104. 被引量:1
  • 4百度百科.“水军”现象[EB/OL],[2013-10-25].http://baike.baidu.com/view/3098178.htm. 被引量:1
  • 5新华网.三星“水军”营销遭曝光:诋毁对手被罚千万台币[EB/OL].[2013-10-28].http://news.xinhuanet.com/finance/2013-10/28/c_125607898.htm. 被引量:1
  • 6隆承志,周杰.基于特征共享的垃圾邮件过滤方法[C].见:2010年基于互联网的商业管理学术会议论文集.2010. 被引量:1
  • 7Chen C C, Tseng Y. Quality Evaluation of Product Reviews Using an Information Quality Framework [J]. Decision Support Systems, 2011, 50(4): 755-768. 被引量:1
  • 8Liu Y, Jin J, Ji P, et al. Identifying Helpful Online Reviews: A Product Designer's Perspective [J]. Computer-Aided Design, 2013, 45(2): 180-194. 被引量:1
  • 9苏雪佳.B2C在线评论有用性影响因素研究-以亚马逊网站为例[D].武汉:中南民族大学,2012. 被引量:1
  • 10豆瓣电影网[EB/OL].[2013-11-25].http://movie.douban.com/. 被引量:1

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部