摘要
针对异步电动机组成的同步传动系统,在两相静止αβ坐标系下建立系统的11阶非线性模型,推导出系统的向量相对阶。研究表明系统相对阶不能满足系统进行精确线性化的要求,故在研究点的切空间中,寻求满足条件的补充变换基。采用微分几何非线性状态反馈控制方法,将系统解耦为4个线性子系统,在各子系统中,运用线性系统理论分别设计控制器,实现速度、磁链、张力的解耦控制。仿真结果表明,解耦控制获得了令人满意的性能。
The mathematic model of multi-motor synchronous drive system,constructed with two induction motors,is given under stationaryαβframe.Vector relative degree of the system was calculated,as the relative degree does not meet the requirements of exact linearization,complementary bases of transformation matrix are found in tangent space.The method of differential geometric nonlinear state feedback control is introduced and the nonlinear drive system is decoupled to four linear subsystems.Linear system theory is used to design controllers.Some simulations have been employed,and the results are satisfactory.
出处
《安徽工业大学学报(自然科学版)》
CAS
2011年第1期42-50,共9页
Journal of Anhui University of Technology(Natural Science)
关键词
多电机同步传动系统
微分几何
非线性状态反馈
解耦控制
multi-motor synchronous drive system
differential geometry
nonlinear state feedback
decoupling control