期刊文献+

基于Mean Shift方法的肝脏CT图像的自动分割 被引量:6

Automatic segmentation of liver CT images based on Mean Shift method
下载PDF
导出
摘要 目的探讨基于Mean Shift方法的肝脏CT图像的自动分割算法,以实现肝脏的自动分割。方法首先对原始图像进行单次Mean Shift平滑,滤除噪声的影响以增强算法的鲁棒性,然后通过Mean Shift迭代自动选取初始种子点,最后采用基于区域生长的方法实现肝脏CT图像的自动分割。结果实验证明此方法是一个准确、快速和有效的肝脏自动分割方法。结论采用本文中提出的方法,可有效地实现肝脏的自动分割。 Objective To assess the method based on Mean Shift for automatic segmentation of liver regions in CT images. Methods Firstly,the Mean Shift smoothing method achieved with a single iteration was applied to remove the noise in the original image for robustness enhancement of the algorithm. Then the initial seed point was selected automatically based on Mean Shift iterations and finally the region growing approach was utilized to implement automatic liver segmentation of the image. Results Experiment results showed that the presented algorithm was an accurate,fast and effective method for automatic segmentation of liver regions in CT images. Conclusion The new algorithm presented in this paper can efficiently implement automatic segmentation of liver regions from CT images.
出处 《中国医学影像技术》 CSCD 北大核心 2010年第12期2367-2370,共4页 Chinese Journal of Medical Imaging Technology
基金 上海市教委选拔培养优秀青年教师科研专项基金(358536)
关键词 体层摄影术 X线计算机 图像分割 区域生长 Tomography X-ray computed Image segmentation Region growing
  • 相关文献

参考文献10

二级参考文献74

共引文献38

同被引文献38

  • 1张季,王宜杰.医学图像三维重建方法的比较研究[J].医学信息(西安上半月),2006,19(6):948-950. 被引量:12
  • 2金利芳,缪競陶.CT肺灌注成像与通气成像技术[J].上海医学影像,2007,16(1):68-71. 被引量:1
  • 3田捷,包尚联,周明全.医学影像处理和分析[M].北京:电子工业出版社,2003. 被引量:4
  • 4Kropatsch WG, Yhaxhimusa Y. Grouping and segmentation in a hierarchy o[ graphs. Computational Imaging II, SPIE, 2004, 5299: 193-204. 被引量:1
  • 5Marfil R, Rodriguez JA, Bandera A, et al. Bounded irregular pyramid : a new structure for colour image segmentation. Pattern Recognition, 2004,37(3) : 623-626. 被引量:1
  • 6Marfil R, Molina-Tanco L, Bandera A, et at. Pyramid segmenta- tion algorithms revisited. Pattern Recognition, 2006, 39 (8) : 1430-1451. 被引量:1
  • 7Haxhimusa Y, Kropatsch W. Segmentation graph hierarchies.Lecture Notes on Computer Science. Berlin: Springer, 2004, 3138 : 343-351. 被引量:1
  • 8Kropatsch WG. Building irregular pyramids by duaI graph con- traction. Vision Image Signal Process, 1995, 142(6) :366-374. 被引量:1
  • 9Comaniciu D, Meer P. Mean shift analysis and applications. San Juan: IEEE International Conference on Computer Vision, 1999: 1197-1203. 被引量:1
  • 10Comaniciu D. Mean Shift: A robust approach toward feature space analysis. IEEE Transaction on Pattern Analysis and Ma- chine Interlligenee, 2002,24(5) : 1-18. 被引量:1

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部