摘要
本文研究一类七阶色散方程初值问题的局部适定性.利用Bourgain方法(Fourier trans-form restriction norm method),证明了当s>-5/8时该初值问题在H^s上局部适定,从而改进了2005年Tao S.P.,Cui S.B.发表在Acta Mathematica Simaica(A)上的结果.
This paper study the local well-posedness of initial value problem associated to a seven-order equation.Indeed,using Bourgain method(Fourier transform restriction norm method),we prove that the initial value problem of the seven-order equation is locally well-posed in H^s whenever s-5/8 which improves the results in Tao,Cui,Acta Mathematica Sinica,2005.
出处
《数学进展》
CSCD
北大核心
2010年第6期691-699,共9页
Advances in Mathematics(China)
基金
浙江省自然科学基金(No.Y6080388)
浙江省教育厅科研计划项目(No.Y200805137)
浙江海洋学院校级科研项目(No.X08Z04
No.X08M014)
关键词
七阶
色散方程
初值问题
适定性
seven-order
dispersive
initial value problem
well-posedness