期刊文献+

七阶色散方程Cauchy问题的局部适定性 被引量:1

Local Well-posedness of Cauchy Problem for 7-order Dispersive Equation
原文传递
导出
摘要 本文研究一类七阶色散方程初值问题的局部适定性.利用Bourgain方法(Fourier trans-form restriction norm method),证明了当s>-5/8时该初值问题在H^s上局部适定,从而改进了2005年Tao S.P.,Cui S.B.发表在Acta Mathematica Simaica(A)上的结果. This paper study the local well-posedness of initial value problem associated to a seven-order equation.Indeed,using Bourgain method(Fourier transform restriction norm method),we prove that the initial value problem of the seven-order equation is locally well-posed in H^s whenever s-5/8 which improves the results in Tao,Cui,Acta Mathematica Sinica,2005.
作者 赵向青
出处 《数学进展》 CSCD 北大核心 2010年第6期691-699,共9页 Advances in Mathematics(China)
基金 浙江省自然科学基金(No.Y6080388) 浙江省教育厅科研计划项目(No.Y200805137) 浙江海洋学院校级科研项目(No.X08Z04 No.X08M014)
关键词 七阶 色散方程 初值问题 适定性 seven-order dispersive initial value problem well-posedness
  • 相关文献

参考文献1

二级参考文献20

  • 1Kaup, D. J.: On the inverse scattering for cubic eigenvalue problems of the class equations. Stud. Appl. Math., 62, 189-195 (1980). 被引量:1
  • 2Kupershmidt, B. A.: A super Korteweg-de-Vries equatons: an integrable system. Physics Letters, A, 102,213-218 (1994). 被引量:1
  • 3Benilov, E. S., Grimshaw, R. and Kuznetsova, E. P.: Dressing method Darboux transformation and generalized restrict ed flows for the KdV hierarchy. Physica D, 169, 270 (1993). 被引量:1
  • 4Grimshaw, R. and Pavlov, M.: Exact periodic steady solutions for nonlinear wave equations: A new approach. Physics Letters A, 251(4). 25-30 (1999). 被引量:1
  • 5Hunter, J. K. and Scheurle, J.: Existence of perturbed solitary wave solutions to a model equation for water waves. Physica D, 32, 235-268 (1988). 被引量:1
  • 6Hu, X., Wang, D. and Qian, X.: Soliton solutions and symmetries of the 2+1 dimensional Kaup-Kupershmidt equation. Physics Letters, A, 262(15), 409-415 (1999). 被引量:1
  • 7Boyd, J. P.: Weakly non-local solitons for capillary-gravity waves: fifth degree Korteweg-de Vries equation. Physica D, 48(2), 129-146 (1991). 被引量:1
  • 8Buffoni, B, Champneys, A. R. and Toland, J. F.: Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system. J. Dyn. Diff. Eq., 8, 221-123 (1996). 被引量:1
  • 9Champneys, A. R, and Groves, M. D.: A global investigation of solitary-wave solutions to a two-parameter model for water waves. J. Fluid. Mech., 342, 199- 222 (1997). 被引量:1
  • 10Champneys, A. R. and Toland, ,J. F.: Hunting for homoclinic orbits in reversible systems: a shooting technique. NorHinearity, 6, 665-671 (1993). 被引量:1

共引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部