期刊文献+

使用移动锚节点的传感器网络节点定位算法 被引量:3

A node localization algorithm for WSN using a mobile anchor node
原文传递
导出
摘要 提出一种利用移动锚节点、基于小生境粒子群的定位算法NPLA.普通待定位节点使用基于小生境思想的粒子群算法(PSO),根据接收到锚节点信号的信号强度(RSSI)值进行最优的自身位置估计.算法支持锚节点可按预定或随机路径移动,且可同时作为收集数据和管理网络的汇聚节点.所提算法具有分布式计算、实现简单及硬件需求低等特点,适合在大规模无线传感网中应用.仿真表明NPLA定位精度较以往算法有明显提高. A range-based localization algorithm for WSN(wireless sensor network) was proposed by using a mobile anchor node to locate the other nodes,in this paper,namely NPLA(niching PSO-based localization algorithm).By the RSSI(received signal strength indicator) values of beacons from the mobile anchor,the unknown nodes use the niche PSO(particle swarm optimization) algorithm to get the optimal estimation.The anchor could move in a pre-defined or random trajectory,meanwhile,it could also be a sink for data-collecting and network management.NPLA was easy to implement,with low complexity and hardware requirement,suitable for large scale WSN applications.Simulations show that NPLA has a higher accuracy than that of the previous methods.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第12期28-31,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家科技重大专项基金资助项目(2009ZX03006-007) 上海市'启明星'青年人才支持计划资助项目(08QB1404200)
关键词 计算机网络 无线传感网 移动锚节点 小生境 粒子群算法 computer networks wireless sensor network mobile anchor nodes niche particle swarm optimization
  • 相关文献

参考文献11

  • 1王海林,黄河清,张宝贤.一种无线传感器网络中快速汇聚传输调度算法[J].华中科技大学学报(自然科学版),2010,38(4):9-13. 被引量:2
  • 2Xiao B, Chen H, Zhou S. Distributed localization using a moving beacon in wireless sensor networks [J].IEEE Transactions on Parallel and Distributed Systems, 2008, 19(5): 587-600. 被引量:1
  • 3Patwari N, Ash J N, Kyperountas S, et al. Locating the nodes:cooperative localization in wireless sensor networks [J].IEEE Signal Processing Magazine, 2005, 22(4): 54-69. 被引量:1
  • 4Priyantha N B, Chakraborty A, Balakrishnan H. The cricket location-support system[C]//Proc of the 6th Annual Int'l Conf on Mobile Computing and Networking. New York: ACM Press, 2000: 32-43. 被引量:1
  • 5Wang C, Xiao L. Sensor localization under limited measurement capabilities[J].IEEE Network, 2007, 21(3) : 16-28. 被引量:1
  • 6Wang W D, Zhu Q X. RSS-based Monte Carlo localisation for mobile sensor networks[J], IET Communications, 2008, 2(5): 673-681. 被引量:1
  • 7Bahi J, Makhoul A, Mostefaoui A. A mobile beacon based approach for sensor network localization[C]// 3rd IEEE International Conference on Wireless & Mobile Computing, Networking and Communication. New York: IEEE, 2007: 44. 被引量:1
  • 8Huang R, Zaruba G. Static path planning for mobile beacons to localize sensor networks[C]//Proceedings of the 5th IEEE International Conference on Pervasive Computing and Communications Workshops. New York: IEEE, 2007:323-330. 被引量:1
  • 9Hu Z, Gu D, Song Z, et al. Localization in wireless sensor networks using a mobile anchor node[C]// Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics:Xi'an: IEEE, 2008: 602-607. 被引量:1
  • 10Shi Y, Eberhart R C. A modified particle swarm op timizer[C]//Proc of IEEE Int'l Conf on Evolution ary Computation. Washington D C: IEEE, 1998 69-73. 被引量:1

二级参考文献10

  • 1柯欣,孙利民,吴志美.基于无线传感器网络汇聚传输实时性的分布式调度算法[J].通信学报,2007,28(4):44-50. 被引量:7
  • 2Ramanathan S. A unified framework and algorithm for channel assignment in wireless networks [J]. Wireless Networks, 1999, 5(2): 81-94. 被引量:1
  • 3Lloyd E L. Handbook of wireless networks and mobile computing[M].New York: John Wiley & Sons, 2002. 被引量:1
  • 4Hajek B, Sasaki G. Link scheduling in polynomial time [J].IEEE Trans Information Theory, 1988, 34 (5) : 910-917. 被引量:1
  • 5Ergen S C, Varaiya P. TDMA scheduling algorithms for sensor networks[R]. Berkeley.. University of California, 2005. 被引量:1
  • 6Mao J, Wu Z, Wu X. A TDMA scheduling scheme for many-to-one communications in wireless sensor networks[J].Computer Communications, 2007, 30 (4) : 863-872. 被引量:1
  • 7Lu G, Krishnamachari B, Raghavendra C S. An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks[C]//Proc 18th International Parallel and Distributed Process. Symposium, Santa Fe.. IEEE, 2004:224-231. 被引量:1
  • 8Choi H, Wang J, Hughes E A. Scheduling for information gathering on sensor network[J].Wireless Networks, 2009, 15(1): 127-140. 被引量:1
  • 9Gandham S, Zhang Y, Huang Q, Distributed timeoptimal scheduling for convergecast in wireless sensot networks[J]. Computer Networks, 2008, 52 (3) :610-629. 被引量:1
  • 10Song W Z, Huang R J, Shirazi B. TreeMAC: Localized TDMA MAC protocol for real-time high-datarate sensor networks[C] // Seventh Annual IEEE International Conf Pervasive Computing and Communications. Galveston: IEEE, 2009. 被引量:1

共引文献1

同被引文献18

  • 1曹峰,刘丽萍,王智.能量有效的无线传感器网络部署[J].信息与控制,2006,35(2):147-153. 被引量:41
  • 2Mehrabian A R, Lucas C. A novel numerical optimb zation algorithm inspired from weed colonization[J]. Ecological Informatics, 2006,1(4) : 355-366. 被引量:1
  • 3Basak A, Pal S, Das S, et al. Circular antenna array synthesis with a differential invasive weed optimization algorithm[C]//10th International Conference on Hybrid Intelligent Systems. Atlanta: IEEE, 2010: 153-158. 被引量:1
  • 4Basak A, Pal S, Das S, et al. A modified invasive weed optimization algorithm for time-modulated linear antenna array synthesis[C]//IEEE Congress on Evolutionary Computation (CEC). Barcelona: IEEE, 2010: l-8. 被引量:1
  • 5Pal S, Basak A, Das S, et al. Linear antenna array synthesis with invasive weed optimization algorithm [C]///International Conference of Soft Computing and Pattern Recognition. Malacca: IEEE, 2009: 161- 166,. 被引量:1
  • 6Zdunek R, Ignor T. UMTS base station location planning with invasive weed optimization[C]//Proceedings of the 10th International Conference on Artifical Intelligence and Soft Computing: Part II.Zakopane: Springer-Verlag, 2010: 698-705. 被引量:1
  • 7Zhang X, Wang Y, Cui G, et al. Application of a novel IWO to the design of encoding sequences for DNA computing[J]. Computers & Mathematics with Applications, 2009, 57(11-12): 2001-2008. 被引量:1
  • 8Krishnanand K R, Nayak S K, Panigrahi B K, et al. Comparative study of five bio-inspired evolutionary optimization techniques[C]// World Congress on Nature & Biologically Inspired Computing. Coimbatore: IEEE, 2009: 1231-1236. 被引量:1
  • 9Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm[C]//IEEE Interna- tional Conference on Systems, Man, and Cybernetics. Orlando: IEEE, 1997: 4104-4108. 被引量:1
  • 10Huang C J, Chuang Y T, Hu K W. Using particle swam optimization for QoS in ad-hoc multicast[J]. Engineering Applications of Artificial Intelligence, 2009, 22(8): 1188-1193. 被引量:1

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部