期刊文献+

一种基于免疫小生境思想的粒子群优化算法 被引量:6

PSO based on immunity niche concept
下载PDF
导出
摘要 针对PSO易收敛于局部最优的缺点,提出了运用免疫小生境思想来改进PSO。该算法在初始化时,运用正交的思想,使得粒子分布均匀;且在进化时,通过对每个粒子做免疫变换,使得每个粒子扩展成为在一个区域寻找最优值,提高了粒子的多样性,避免了局部最优;并且在变换时,每隔几代才进行免疫变换。这样在保证粒子多样性的基础上减少了运算量,提高了收敛速度。并在MATLAB环境下对Ackley函数、Schaffer函数、Griewank函数、Rastrigrin函数四个多峰函数进行了仿真验证,实验结果表明,改进的PSO算法能够有效地达到全局最优。 Due to the premature convergence of PSO,immunity niche concept is adopted to improve the performance of PSO.Orthogonal principle is applied to the initialization of particle,so particles are evenly distributed.During the evolution,every particle is extended to a region by immunity operation,so the algorithm can improve the diversity and has the capability of avoiding premature convergence.Since the immunity operation is only performed every several generations,The convergence velocity is improved.And it is verified by Ackley function,Shcaffer function and Grievank function in MATLAB,the result shows that the improved PSO can realize global optimization effectively.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第8期95-97,共3页 Computer Engineering and Applications
关键词 粒子群优化 全局最优 免疫 小生境 PSO global optimization immunity niche
  • 相关文献

参考文献10

  • 1Kennedy J,Eberhart R.Particle swarm optimization}[C]//IEEE Int'l Conference on Neural Networks, Perth, Australia, 1995 : 1942-1948. 被引量:1
  • 2Kennedy J,Russell Eberhart.A new optimizer using particle swarm theory[C]//Proc of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995:39-43. 被引量:1
  • 3Kennedy J,Eberhart R.A discrete binary version of the particle swarm algorithm [C]//Proc Conf on Systems,Man and Cybernetics, IEEE Service Center,Piscataway,NJ,1997:4104-4108. 被引量:1
  • 4Shi Y,Eberhart R.A modified particle swarm optimizer[C]//IEEE World Congress on Computational Intelligence, 1998:68-73. 被引量:1
  • 5Shi Y,Eberhart R.Fuzzy adaptive particle swarm optimization[C]// Proc Congress on Evolutionary Computation,Seoul,Korea,2001: 101-106. 被引量:1
  • 6Eberhart C,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization [C]//Proceedings of the 2000 International Congress on Evolutionary Computation (San Diego, Calfornia),IEEE Service Center,Piscataway,NJ,2000:84-88. 被引量:1
  • 7焦李成等著..免疫优化计算学习与识别[M].北京:科学出版社,2006:464.
  • 8杨海清..遗传算法的改进及其应用研究[D].浙江工业大学,2004:
  • 9黄建江,须文波,孙俊,董洪伟.量子行为粒子群优化算法的布局问题研究[J].计算机应用,2006,26(12):3015-3018. 被引量:12
  • 10徐立芳,王科俊,莫宏伟.基于小生境进化策略的免疫算法参数优化[J].哈尔滨工程大学学报,2006,27(B07):241-246. 被引量:1

二级参考文献15

  • 1张玉萍,张春丽,蒋寿伟.皮料优化排样的有效方法[J].软件学报,2005,16(2):316-323. 被引量:16
  • 2JIAO L,WANG L.Novel genetic algorithm based on immunity[J].IEEE Transaction on Systems,ManCybernetics(Part A):Systems and Humans,2001,46(16):1336-1345. 被引量:1
  • 3CHUN J,KIM M,JUN H.Shape optimization of electromagnetic devices using immune algorithm[J].IEEETransactions on Magetic,1997,33(2):223-235. 被引量:1
  • 4MORI K,TSUKIYAMA M,FUKUDA T.Immune algorithm and Its application to factory load dispatching planning[A].Proc.of Japan-USA Symposium on Flexible Automation[C].Tokyo,1994. 被引量:1
  • 5GREFENSTETTE J.J.System optimization of control parameters for genetic algorithms[J].IEEE Trans.on Systems,Man and Cybernetics,1995,16:122-128 被引量:1
  • 6KAWANA M,HIRAMATSU T,DYNAMIC M.Control of immune agorithm by using evolutionary algorithm with niche method[A].International Conference on Electrical Engineering[C].Hong Kong,1999. 被引量:1
  • 7SCHUG A,WENZES I.An Evolutionary Strategy for All-Atom Folding of the 60-Amino-Acid Bacterial Ribosomal[J].Biophys,2006,90:4273-4280. 被引量:1
  • 8RAMESH BABU A,RAMESH BABU N.A generic approach for nesting of 2-D parts in 2-D sheets using genetic and heuristic algorithms[J].Computer-Aided Design,2001,33(12):879-891. 被引量:1
  • 9JAIN S,CHANG HG.Two-dimensional packing problems using genetic algorithms[J].Engineering with Copmuters,1998,14(3):206-213. 被引量:1
  • 10SUN J,XU WB.A Global Search Strategy of Quantum-behaved Particle SwarmOptimization[A].Proceedings of IEEE conference on Cybernetics and Intelligent Systems[C].2004.111-116. 被引量:1

共引文献11

同被引文献34

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部