期刊文献+

Modified domain decomposition method for Hamilton-Jacobi-Bellman equations

Modified domain decomposition method for Hamilton-Jacobi-Bellman equations
下载PDF
导出
摘要 This paper presents a modified domain decomposition method for the numerical solution of discrete Hamilton-Jacobi-Bellman equations arising from a class of optimal control problems using diffusion models. A convergence theorem is established. Numerical results indicate the effectiveness and accuracy of the method. This paper presents a modified domain decomposition method for the numerical solution of discrete Hamilton-Jacobi-Bellman equations arising from a class of optimal control problems using diffusion models. A convergence theorem is established. Numerical results indicate the effectiveness and accuracy of the method.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第12期1585-1592,共8页 应用数学和力学(英文版)
关键词 optimal control discrete Hamilton-Jacobi-Bellman equations VARIATIONALINEQUALITY modified domain decomposition method CONVERGENCE optimal control, discrete Hamilton-Jacobi-Bellman equations, variationalinequality, modified domain decomposition method, convergence
  • 相关文献

参考文献1

二级参考文献7

  • 1Crandall M G,Ishi H,Lions P L. User's guide to viscous solution[J]. Bull. AMS. ,1992,27(1) :1-67. 被引量:1
  • 2Hoppe R H W. Multigrid methods for HJB equation[J]. Numer. Math. ,1986,49(2):239-254. 被引量:1
  • 3Sun M. Domain decomposition method for solving HJB equations[J]. Numer. Funct. Anal. Optim. , 1992,14(2) :145-166. 被引量:1
  • 4Sun M. Alternative direction algorithms for solving HJB equation[J ]. Appl. Math. Optim. , 1996,34 (3) :267-277. 被引量:1
  • 5Zhou S Z,Zhan W P. A new domain decomposition method for a HJB equaiton[J]. J. Comp. Appl. Math. ,2003,159(2) : 195 -204. 被引量:1
  • 6Young D. Iterative Solution of Large Linear System[M]. New York:AP, 1971. 被引量:1
  • 7Bellman R. Adaptive Control Processes[M]. New Jersey: Princeton University Press, 19 61. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部