期刊文献+

基于密度的分布式隐私保护异常检测算法

Outlier detection algorithm of distributed privacy-preserving based on density
下载PDF
导出
摘要 现有的隐私保护异常检测算法大多是基于距离的,针对垂直划分的数据库提出一种隐私保护密度异常检测算法VPPDBOM。该算法基于密度异常检测算法(DBOM)的思想实现异常检测,利用垂直划分数据库中对象的邻域是其局部邻域交集的子集的特征,提高了DBOM算法中对象邻域的计算效率。同时基于半诚实模型,应用安全多方计算技术的安全和协议、安全交集协议实现隐私保护。理论分析和实验结果表明,该算法既保护了隐私信息又保证了性能。 For existing privacy-preserving distributed outlier detection algorithms are mainly distance based,a density based outlier detection algorithm for privacy-preserving DBOM outlier detecting over vertically partitioned data are proposed.By using the feature that neighborhood is the subset of all local neighborhoods' intersection over vertically partitioned data,VPPDBOM improved the computational efficiency of neighborhoods in DBOM;meanwhile,under the semi-honest model,the algorithm used secure sum protocol and secure intersection protocol of secure multi-party computation for protecting privacy information.Theoretical analysis and experimental results show that algorithm maintains privacy of the data sets of each party and keeps communication and computation cost low.
作者 张倩 薛安荣
出处 《计算机工程与设计》 CSCD 北大核心 2010年第23期4960-4962,5023,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60773049) 江苏大学高级人才启动基金项目(09JDG041)
关键词 隐私保护 分布式数据 基于密度 安全多方计算 异常检测 privacy-preserving partitioned data density based secure multi-party computation outlier detection
  • 相关文献

参考文献9

  • 1Verykios V S,Bertino E,Fovino I N,et al.State-of-the-art in privacy preserving data mining[C].New York,NY,USA:ACM SIGMOD Record,2004:50-57. 被引量:1
  • 2李哲鹏..分布式数据挖掘中的隐私保护问题研究[D].中国科学技术大学,2007:
  • 3Vaidya J,Clifton C.Privacy-preserving outlier detection[M].Brighton,UK:The Fourth IEEE International Conference on Data Mining,2004:1-4. 被引量:1
  • 4Zhou Zhengyou,Huang Liusheng,Wei Yang,et al.Privacy preserving outlier detection over vertically partitioned date[C].Wuhan,China:The International Conference on E-Business and Information System Security,2009:23-24. 被引量:1
  • 5Yu Y,Leiwo J,Premkumar B.A study on the security of privacy homomorphism[C].Washington,DC,USA:The Third Intemational Conference on Information Technology,2006:470-475. 被引量:1
  • 6Mark Shaneck,Yongdae Kim.Privacy preserving nearest neighbor search[C].Brighton,UK:The Sixth IEEE International Conference on Data Mining,2006:541-545. 被引量:1
  • 7崔贯勋,朱庆生.一种改进的基于密度的离群数据挖掘算法[J].计算机应用,2007,27(3):559-560. 被引量:8
  • 8Chris Clifton,Murat Kantarcioglu,Lin Xiaodong,et al.Tools for privacy preserving distributed data mining[J].SIOKDD Explorations,2003,4(2):28-34. 被引量:1
  • 9张宏壮,王建民.分布式数据库保持隐私挖掘方法[J].计算机工程与设计,2008,29(14):3684-3686. 被引量:2

二级参考文献17

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部