期刊文献+

基于MIE和SVM算法的无级变速器故障诊断研究 被引量:2

Study on Fault Diagnosis of Continuously Variable Transmission based on MIE and SVM Algorithm
下载PDF
导出
摘要 汽车变速器早期故障监测与诊断对汽车安全行驶和降低交通事故起着非常重要的作用。针对汽车无级变速器故障特征,提出一种基于互信息熵(Mutual Information Entropy,MIE)理论的故障信号特征提取方法,以及易于实现的多类分类支持向量机(Support Vector Machine,SVM)算法处理故障状态分类问题。结果表明,将MIE和SVM算法相结合用于汽车无级变速器故障诊断方面是可行的和有效的,并能提高故障监测的可靠性。 The fault inspection and diagnosis of vehicle transmission plays a important role of safety traffic and knocking the traffic accidents down.For the fault character of vehicle continuously variable transmission(CVT),the fault signal character extract entropy method based on the theory of mutual information entropy and the multiclass classification support vector machine(SVM) algorithm to be easily implemented to deal with the problem of classification for fault state are proposed.Experimental results show that the combination mutual information entropy with multiclass classification SVM algorithm in fault diagnosis of vehicle CVT is the feasibility and efficiency,and the reliability of fault inspection is improved.
出处 《机械传动》 CSCD 北大核心 2010年第12期44-47,共4页 Journal of Mechanical Transmission
基金 重庆市科委重点攻关项目(2005CC25)
关键词 故障诊断 互信息熵 支持向量机 无级变速器 Fault diagnosis Mutual information entropy Support vector machine Continuously variable transmission
  • 相关文献

参考文献6

二级参考文献22

  • 1刘涛,吴功宜,陈正.一种高效的用于文本聚类的无监督特征选择算法[J].计算机研究与发展,2005,42(3):381-386. 被引量:37
  • 2[1]Emery Hendriks.Qualitative and quantitative influence of a fully electronically controlled CVT on fuel economy and vehicle performance.SAE 930668 被引量:1
  • 3[2]Fujii T.A study of a metal pushing V-belt type CVT-part 1:Relation between transmitted torque and pulley thrust.SAE 930666 被引量:1
  • 4[3]Hiroki Asayama.Mechanism of metal pushing belt.JSAE Review,1995(16):137~143 被引量:1
  • 5[4]Ide T.Simulation approach to the effect of the ratio changing speed of a metal V-belt CVT on the vehicle response.Vehicle System Dynamics,1995(24):377~388 被引量:1
  • 6Weston J, Watkins C. Support vector machines for multi class pattern recognition[C]//Proceedings ofthe 7^th European Symposium on Artificial Neural Networks. Bruges, Belgium: [s. n.], 1999: 219-224. 被引量:1
  • 7Friedman J H. Another apporoach to polychotomous classification [R]. Stanford University, Department of Statistics, 1996. 被引量:1
  • 8Krebel U. Pairwise classification and support vector machines [M]. Cambridge, USA: The MIT Press, 1999:255-268. 被引量:1
  • 9Weston J, Watkins C. Multi-class support vector machines[R]. CSD-TR 98-04, Royal Holloway, University of London, 1998. 被引量:1
  • 10Rifkin R, Clautau A. In defense of one vs all classification [J]. Journal of Machine Learning Research ,2004, (5) : 101-141. 被引量:1

共引文献76

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部