期刊文献+

在线金属切削刀具磨损状态监测研究的回顾与展望Ⅱ:信号特征的提取 被引量:9

The Review and Perspective of the Research of On-line and Indirect Metal Cutting Tool Condition Monitoring Ⅱ:Feature Extraction of Monitoring Signals
下载PDF
导出
摘要 刀具状态监测的目的是为了开发出实用的刀具状态监测设备。为了降低设备成本和提高监测的准确率,提取监测信号中最能反映刀具状态的特征是至关重要的。对近些年来在学术期刊上公开发表的关于刀具磨损在线监测研究中所采用的信号特征提取方法作简要的回顾与归纳,并得出如下结论:信号的特征提取算法有很多种,不同的信号对应不同的特征提取方法,即使是同一信号也可以用不同的特征提取方法描述它们在不同域内的特征;只有将不同的信号及不同的特征提取方法结合起来,才能实现成本低、可靠性高、安装方便的刀具监测系统。 The aim of the cutting tool condition monitoring is to develop the practical cutting tool condition monitoring facilities.In order to reduce the facility cost and improve the accuracy of monitoring,it's important to extract the feature that can respond to the cutting tool condition.A summary of the signal feature extraction methods for tool wear and failure monitoring in metal cutting that have been tested and reported in the literature was presented.The conclusions are that there are many signal feature extraction algorithm,different signals correspond to different feature extraction method,the identical signal can also use the different feature extraction methods to describe their characteristics in different regions.Only combining the different signals with different feature extraction methods can realize tool monitoring systems with low-cost,high reliability and easy installation.
作者 关山
出处 《机床与液压》 北大核心 2010年第17期121-125,共5页 Machine Tool & Hydraulics
关键词 刀具状态监测系统 特征提取 时域分析 频域分析 时-频域分析 Tool condition monitoring system Feature extraction Time-domain analysis Frequency-domain analysis Time-frequency domain analysis
  • 相关文献

参考文献33

  • 1郑建明..基于HMM的多特征融合钻头磨损监测技术的研究[D].西安理工大学,2004:
  • 2Scheffer C,Heyns P S.Wear monitoring in turning operations using vibrationand strain measurement[J].Mechanical Systems and Signal Processing,2001,15(6):1185-1202. 被引量:1
  • 3Jemielniak K,Otman O.Tool failure detection based onanalysis of accoustic emission signals[J].Journal of Material Proessing Technology,1998,76:192-197. 被引量:1
  • 4Moriwaki T,Tobito M.A new approach to automatic detection of life of coated tool based on acoustic emission measurement[J].ASME Trans.Journal of Engineering for industry,1990,112(3):212-218. 被引量:1
  • 5Haber R E,Jimenez J E,Peres C R,et al.An investigation of tool-wear monitoring in a high-speed machining process[J].Sensors and Actuators A:Physical,2004,116(3):539-545. 被引量:1
  • 6Al-Habaibeh A,Zorriassatine F,Gindy N.Comprehensive experimental evaluation of a systematic approach for cost effective and rapid design of condition monitoring systems using Taguchi's method[J].Journal of Materials Processing Technology,2002,124:372-383. 被引量:1
  • 7Silva R G,Reuben R L,Baker K J,et al.Tool wear monitoring of turning operations by neural network and expert system classification of a feature set generated from multiple sensors[J].Mechanical Systems and Signal Processing,1998,12(2):319-332. 被引量:1
  • 8Silva R G,Baker K J,Wilcox S J.The adaptability of a tool wear monitoring system under changing cutting conditions[J].Mechanical Systems and Signal Processing,2000,14(2):287-298. 被引量:1
  • 9Abu-Mahfouz I.Drilling wear detection and classificationusing vibration signals and artificial neural network[J].Int.J.Mach.Tool Manuf.,2003,43(7):707-720. 被引量:1
  • 10Jantunen Erkki.A summary of methods applied to toolcondition monitoring in drilling[J].Int.J.Mach.Tool Manuf.,2002,42:997-1010. 被引量:1

同被引文献119

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部