期刊文献+

基于递归小波神经网络的刀具状态在线监测 被引量:2

On-line Tool Condition Monitoring Based on Recursive Wavelet Neural Networks
下载PDF
导出
摘要 以超高斯函数为基础,构造出一类用递推公式进行小波变换的小波基,提出一个新的递归小波基,并对其时频特性进行了分析。基于框架小波神经网络理论,利用连续函数介值定理,构造出一种紧致型小波网络,并对其初始化与学习算法进行了研究。最后,对刀具AE信号进行递归小波分解,提取特征并应用小波网络识别刀具状态,识别率达到100%。 Based on the Super-Gaussian function, a general method of recursive mother wavelet was introduced, and an optimal method of wavelet construction was proposed. The time-frequency characteristics of recursive wavelet were analyzed. A close-typo wavelet network was constructed using the theory of frame wavelet network and the intermediate value theorem of continuous functions. The AE signals of tool conditions were decomposed using a recumive wavelet from which the features were extracted and delivered to the wavelet network for fault recognition, and the recognition rate is up to 100%.
出处 《机床与液压》 北大核心 2007年第2期172-175,共4页 Machine Tool & Hydraulics
关键词 递归小波 小波网络 刀具状态 在线监测 Recursive wavelet Wavelet network Tool condition On-line monitoring
  • 相关文献

参考文献20

  • 1虞和济 ... ..基于神经网络的智能诊断[M],2000.
  • 2Daubechies I.The Wavelet Transform Time-Frequency Location and Signal Analysis[J].IEEE Trans.on IT,1990,36(5):961-1005. 被引量:1
  • 3Daubechies I.Ten Lectures on Wavelets[M].Philadelphia:SIAM,1992. 被引量:1
  • 4S.Kamarthi,S.Kumara,P.Cohen.Wavelet repress-entation of acoustic emission in turning process[J].Intell.Eng.Syst.Artif.Neural Netw,1995(5):861-866. 被引量:1
  • 5王忠民,王信义,陈爱第,贾玉平.Monitoring Tool Wear States in Turning Based on Wavelet Analysis[J].Journal of Beijing Institute of Technology,2001,10(1):101-107. 被引量:6
  • 6Erkki Jantunen.A summary of methods applied to tool condition monitoring in drilling[J].International Journal of Machine Tools & Manufacture,2002,42:997-1010. 被引量:1
  • 7Xiaoli Li.A brief review:acoustic emission method for tool wear monitoring during turning[J].International Journal of Machine Tools & Manufacture,2002,42:157-165. 被引量:1
  • 8Toshiyuki Obikawa,Jun Shinozuka.Monitoring of flank wear of coated tools in high speed machining with a neural network ART2[J].International Journal of Machine Tools & Manufacture,2004,44:1311-1318. 被引量:1
  • 9何正友,王晓茹,钱清泉.一类递归小波的构造及其应用[J].电力系统自动化,2000,24(10):9-13. 被引量:11
  • 10任震 ... ..小波分析及其在电力系统中的应用[M],2003.

二级参考文献46

  • 1黄惟公.线性判别函数对刀具监视中声发射信号的分析[J].四川工业学院学报,1995,14(2):16-21. 被引量:7
  • 2吴耀军,陶宝祺,袁慎芳.B样条小波神经网络[J].模式识别与人工智能,1996,9(3):228-233. 被引量:14
  • 3杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.. 被引量:151
  • 4[2]Zhang Q. Using Wavelet Network in Nonparametric Estimation. IEEE Trans on Neural Network, 1997, 8(2): 227~236 被引量:1
  • 5[4]Zhang J, Walter G G, Miao Y B, et al. Wavelet Neural Networks for Function Learning. IEEE Trans on Signal Processing, 1995, 43(6): 1485~1497 被引量:1
  • 6[5]Daugman J. Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis Compression. IEEE Trans on Acoust, Speech, Signal Proc, 1988, 36(7): 1169~1179 被引量:1
  • 7[6]Zhang Q H, Benveniste A. Wavelet Network. IEEE Trans on Neural Network, 1992, 3(6): 889~898 被引量:1
  • 8[7]Baskshi B R, Stepphanopoulous. Wavelet-net: A Multiresolution, Hierarchical Neural Network with Localization Learning. American Institute Chemical, Engineering Journal, 1993, 39(1): 57~81 被引量:1
  • 9[8]Szu H H, Telfer B, Kadambe B. Neural Network Adaptive Wavelets for Signal Representation and Classification. Optical Engineering, 1992, 31(9): 1906~1907 被引量:1
  • 10[10]Chui C K. Wavelets: A Tutorial in Theory and Application. New York: Academic, 1992 被引量:1

共引文献79

同被引文献54

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部