期刊文献+

基于分布函数概率神经网络的故障诊断 被引量:3

Fault Diagnosis Based on Alpha-Distribution Function PNN
下载PDF
导出
摘要 提出一种α稳定分布基函数概率神经网络(A lpha-PNN)结构,该网络隐层的神经元激活函数采用了对称α稳定分布的概率密度函数,和常规的高斯分布函数相比,其具有更好的可变性和延展性,从而使隐层的神经元在函数近似上具有更高的适应性,同时也克服了概率神经网络对输入数据的独立同分布假设,提高了神经网络对局部脉冲突变的近似能力。在此基础之上,提出了一种新的根据系统输入输出数据实现的故障诊断算法,并将其应用到轴承的故障诊断中。仿真结果表明,在有色噪声的背景下,该算法仍然能够实现较好的识别效果,故障的误报率低于概率神经网络方法。 A modified probabilistic neural network named alpha-stable distributions basis function probabilistic neural network(Alpha-PNN) is proposed.The activation functions of network hidden neurons adopt probability density function of symmetric alpha-stable distributions.Compared with routine gauss distribution function,it has better variability and tractility,so hidden neurons have high adaptability in terms of function approximation.Meanwhile,it overcomes the assumption that input data is independent and identically distributed.And it also improves neural network approximation ability of partial pulse burst.A fault diagnosis algorithm based on input data and output data is proposed,which is applied to the bearing fault diagnosis.The simulation results indicate that this algorithm can achieve good recognizing effects and have low false positive ratio than PNN with the assumption of colored noise.
出处 《控制工程》 CSCD 北大核心 2010年第6期824-827,840,共5页 Control Engineering of China
基金 中国博士后基金资助项目(2008043167) 江苏省博士后基金资助项目(07C2008)
关键词 Α稳定分布 基函数 概率神经网络 故障诊断 有色噪声 alpha-stable distributions basis function probabilistic neural network fault diagnosis colored noise
  • 相关文献

参考文献11

二级参考文献18

  • 1李果,李学仁,何秀然.改进ART1神经网络在航空发动机故障诊断中的应用[J].微计算机信息,2005,21(09S):156-158. 被引量:21
  • 2张文修 梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社,2003.. 被引量:60
  • 3章毓晋.图像分割[M].北京:科学出版社,2001.. 被引量:577
  • 4Babacan SD, Sayood K. Predictive Image Compression Using Conditional Averages[C]. IEEE Proceedings Data Compression Conference, 2004. 524-524. 被引量:1
  • 5Simard PY, Malvar HS, Rinker J, et d. A Foreground/Dackground Separation Algorithm for Image Compression[C], IEEE Proceedings of Data Compression Conference, 2004. 498-507. 被引量:1
  • 6Specht D F.Probabilistic neural network[J].Neural Network,1990,3:109~118. 被引量:1
  • 7Burrascano P.Learning vector quantization for the probabilistic neural network[J].IEEE Trans on Neural Network,1991,2 (4):458~461. 被引量:1
  • 8Streit R L,Luginbuhl T E.Maximum likelihood training of probabilistic neural networks[J].IEEE Trans on Neural Network,1994,5 (5):764 ~ 783. 被引量:1
  • 9Rutkowski L.Adaptive probabilistic neural networks for pattern classification in time-varying environment[J].IEEE Trans on Neural Network,2004,15(4):811~827. 被引量:1
  • 10Hoya T.On the capability of accommodating new classes within probabilistic neural networks[J].IEEE Transation on Neural Network,2003,14 (2):450 ~ 453. 被引量:1

共引文献71

同被引文献35

引证文献3

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部