期刊文献+

基于Ⅰ-Miner的关联规则可视化方法

Visualization Method of Association Rules Based on Ⅰ-Miner
下载PDF
导出
摘要 Ⅰ-Miner缺少关联规则可视化方法,且目前的关联规则可视化方法存在不少缺陷,如歧义、遮蔽和紊乱等。本文提出了改进的平行线法和改进的U矩阵法,利用颜色、文字和线条相结合,解决了歧义问题和图形遮蔽问题;采用了分页显示的方法,尽可能地避免了规则显示时的紊乱。两种改进法是对I-Miner软件缺少关联规则可视化方法的弥补。 Software Ⅰ-Miner is lack of visualization methods of association rules,and existed visualization methods of association rules have many shortcomings,such as ambiguity,shelter,disorder and so on.The paper presented two visualization methods,named improved parallel methods and improved U-matrix methods,which solved the ambiguity and shelter problem by using the combination of color,words,and lines;and avoided the disorder problem using page display of the rules.The two methods made up for the lack of visualization methods of association rules in software Ⅰ-Miner.
出处 《西华大学学报(自然科学版)》 CAS 2010年第6期55-58,共4页 Journal of Xihua University:Natural Science Edition
关键词 关联规则 可视化 U矩阵 平行线法 数据挖掘 association rule visualization U-matrix parallel lines method data mining
  • 相关文献

参考文献10

二级参考文献39

  • 1吉根林,韦素云,曲维光.基于平行坐标的关联规则可视化新技术[J].计算机工程,2005,31(24):87-89. 被引量:5
  • 2Wong Pak Chung, Whitney P, Thomas J. Visualizing Association Rules for Text Mining[C]//Proceedings of the 1999 IEEE Symposium on Information Visualization. Richland, USA: [s. n.], 1999: 120-123. 被引量:1
  • 3Hetzler B, Harris W M, Havre S, et al. Visualizing the Full Spectrum of Document Relationships[C]//Proceedings of the 5th Int'l Conf. of Society for Knowledge Organization. Wurzburg, France: Verlag, 1998: 168-175. 被引量:1
  • 4Li Yang. Visualizing Frequent Itemsets, Association Rules, and Sequential Patterns in Parallel Coordinates[C]//Proceedings of Int'l Conf. on Computational Science and Its Applications. Montreal, Canada:[s. n.], 2003: 21-30. 被引量:1
  • 5Li Yang. Pruning and Visualizing Generalized Association Rules in Parallel Coordinates[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(1): 60-70. 被引量:1
  • 6Han Jiaochan, Cercone N. RuleViz: A Model for Visualizing Knowledge Discovery Process[C]//Proceedings of KDD'00. Boston, USA: [s. n.], 2000: 244-253. 被引量:1
  • 7Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Databases[C]//Proceedings of the ACM SIGMOD Int'l Conf. on Management of Data. Washington, USA: [s. n.], 1993: 207-216. 被引量:1
  • 8Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules[C]//Proceedings of 1994 Int'l Conf. on Very Large Data Bases. Santiago, Chile: [s. n.], 1994: 487-499. 被引量:1
  • 9Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Without Candidate Generation[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas, USA: [s. n.], 2000: 1-12. 被引量:1
  • 10Cristofor D, Cristofor L, Simovici D. Galois Connection and Data Mining[J]. Journal of Universal Computer Science, 2000, 6(1): 60-73. 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部