期刊文献+

基于SOM算法的文本聚类实现 被引量:4

Implementation of Text Clustering Based on Self-organizing Map Algorithm
下载PDF
导出
摘要 以自组织映射(Self-organizing Map,SOM)算法作为理论基础,实现对文本聚类,并采用U矩阵进行可视化表示。通过对聚类结果的分析,表明SOM算法具有较好的聚类效果。 Based on Self-organizing Map algorithm,text clustering is implemented and visualized by U matrix method.The results of mapping show that SOM algorithm has good accuracy and high performance.
出处 《计算机与现代化》 2010年第1期29-31,36,共4页 Computer and Modernization
关键词 文本聚类 SOM算法 U矩阵 text clustering SOM algorithm U matrix
  • 相关文献

参考文献13

  • 1Kohonen T. The Self-organizing Map [ J ]. IEEE, 1990,78 (9) :1464-1480. 被引量:1
  • 2Kohonen T,Kaski S,Lagus K,et al. Self organization of a massive document collection [ J ]. IEEE Transactions on Neural Networks ,2000,11 (3) :574-585. 被引量:1
  • 3Salton G,Yang A C. A vector space model for automatic indexing[J]. Communications of the ACM, 1975,18 ( 11 ) :613-620. 被引量:1
  • 4Cutting D R, Pedersen J O, Karger D R, et al. Scatter/gather:A cluster-based approach to browsing large document collections [ C ]//Proceedings of the ACM SIGIR. Copenhagen, Denmark, 1992 : 318-329. 被引量:1
  • 5Ng R,Han J. Efficient and effective clustering method for spatial data mining [ C]//Proceedings of the 20th VLDB Conference. Santiago, Chile, 1994:144-155. 被引量:1
  • 6张毓敏,谢康林.基于SOM算法实现的文本聚类[J].计算机工程,2004,30(1):75-76. 被引量:19
  • 7Ester M,Kriegel H P,Sander J,et al. A density-based algorithm for discovering cluster in large spatial databases with noise[ C ]//Proceedings of the 20th ACM SIGMOD. Portland, Oregon, 1996:226-231. 被引量:1
  • 8Wang W, Yang J, Muniz R R. Sting: A statistic information grid approach to spatial data mining[ C ]//Proceedings of the 23rd conference on VLDB. Athens, Greece, 1997: 186-195. 被引量:1
  • 9Vesanto J. SOM-based data visualization methods [ J ]. Intelligent Data Analysis, 1999,3 : 111-126. 被引量:1
  • 10Naenna T. Data Mining Application for Self-organizing Maps [ D]. New York: Rensselaer Polytechnic Institute,2003. 被引量:1

二级参考文献2

共引文献18

同被引文献20

  • 1余健,郭平.自组织映射(SOM)聚类算法的研究[J].现代计算机,2007,13(3):7-8. 被引量:16
  • 2陈琴.基于GA-SOM网络的垃圾邮件的特征提取的研究.计算机技术与应用进展,2008,5(4):51-51. 被引量:1
  • 3LICCIARDI G,PRATOLA C,FRATE F D.Completely automatic classification of satellite muhi-spectral imagery for the production of land cover maps[C] //Proc of IEEE International Geoscience and Remote Sensing Symposium.2009:109-112. 被引量:1
  • 4DUQUENOY M,OVARLEZ J R,MORISSEAU C,et al.Supervised classification by neural networks using polarimetrie time-frequency signatures[C] //Proc of IEEE International Geoscience and Remote Sensing Symposium.2009:438-441. 被引量:1
  • 5Bemers-Lee T, Hendler J. The Semantic Web. Scientific American, 2001; 284(5) :34-42. 被引量:1
  • 6Jing Liping, Yun Jiali. High-order Co-clustering text data on seman- tics-based representation model. Lecture Notes in Computer Science, 2011; (6634) :171-182. 被引量:1
  • 7Chowdhury G G. Introduction to modem information retrieval. NewYork; Facet, 2010. 被引量:1
  • 8Kurata K, Oshiro N. Separating visual information into position anddirection by SOM . Artif Life Robotics, 2004 ; 8 : 5-8. 被引量:1
  • 9Sinha S,Singh T N. Epoch determination for neural network by selforganized map ( SOM ). Computational Geosciences, 2010; ( 14 ):199-206. 被引量:1
  • 10梁斌梅.自组织特征映射神经网络的改进及应用研究[J].计算机工程与应用,2009,45(31):134-137. 被引量:7

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部