期刊文献+

一类二阶微分系统结点解的存在性

Existence of nodal solutions for a second-order differential system
下载PDF
导出
摘要 运用分歧方法获得了二阶微分系统{u″(t)+fλ(u,v)=0,0<t<1,v″(t)+gλ(u,v)=0,0<t<1,u(0)=u(1)=v(0)=v(1)=0结点解的存在性,其中f,g是连续函数,λ>0是参数. By applying bifurcation method,the existence of nodal solutions to the second-order differential system{u″(t)+λf(u,v)=0,0t1,v″(t)+λg(u,v)=0,0t1,u(0)=u(1)=v(0)=v(1)=0is obtained,where f,g are continuous,and λ 0 is a real parameter.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2010年第6期7-10,共4页 Journal of Northwest Normal University(Natural Science)
基金 西北师范大学科技创新工程资助项目(NWNU-KJCXGC-03-69 NWNU-KJCXGC-03-61)
关键词 二阶微分系统 分歧 结点解 second-order differential system bifurcation nodal solution
  • 相关文献

参考文献11

  • 1MA Ru-yun, THOMPSON B. Nodal solutions for nonlinear eigenvalue problems [ J ]. Nonlinear Analysis, 2004, 59: 707-718. 被引量:1
  • 2MA Ru-yun. Nodal solutions of boundary value problems of fourth-order ordinary differential equations[J]. J Math AnalAppl, 2006, 319: 424- 434. 被引量:1
  • 3MA Ru-yun. Nodal solutions of second-order boundary value problems with superlinear or sublinear nonlinearities [J].Nonlinear Analysis, 2007, 66(4): 950-961. 被引量:1
  • 4MA Ru-yun, HAN Xiao-ling. Existence of nodal solutions of a nonlinear eigenvalue problem with indefinite weight function[J]. Nonlinear Analysis, 2009, 71:2119- 2125. 被引量:1
  • 5MA Ru-yun, HAN Xiao-ling.. Existence and multiplicity of positive solutions of a nonlinear eigenvalue problem with indefinite weight function [J]. Applied Mathematics and Computation, 2009, 215(3) : 1077-1083. 被引量:1
  • 6FINK A M, GATICA J A. Positive solutions of second-order systems of boundary value problem[J]. J MathAnalAppl, 1993, 180: 93-108. 被引量:1
  • 7YANG Xiao-jing. Existence of positive solutions for 2m-order nonlinear differential systems [J].Nonlinear Analysis, 2005, 61: 77-95. 被引量:1
  • 8WANG Hai-yan. On the number of positive solutions of nonlinear systems [J]. J Math Anal Appl, 2003, 281: 287-306. 被引量:1
  • 9HU Ling, WANG Liang-long. Multiple positive solutions of boundary value problems for systems of nonlinear second order differential equations [J]. J Math Anal Appl, 2007, 335: 1052-1060. 被引量:1
  • 10CHOW S N, HALE J K. Methods of Bifurcation Theory[M]. New York: Springer-Verlag, 1984. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部