期刊文献+

计算圆域上Henon方程边值问题多解的分歧方法 被引量:1

Bifurcation Method for the Multiple Solutions to Boundary Value Problem of Henon Equation on the Disk of Plane
下载PDF
导出
摘要 运用Liapunov-Schimdt约化方法和对称破缺分歧方法,计算了圆形区域Henon方程边值问题的多个具有不同对称性的数值解. Using the Liapunov-Schimdt method and symmetry-breaking bifurcation theory, this paper computes multiple solutions of the boundary value problem of the Henon equation on the disk of plane.
出处 《重庆工学院学报(自然科学版)》 2008年第9期57-63,共7页 Journal of Chongqing Institute of Technology
基金 国家自然科学基金资助项目(10671130) 上海市教委科研基金资助项目(05DZ07) 上海市重点学科建设项目(T0401) 上海市科委重点项目(06JC14092)
关键词 O(2)对称性 L—S约化 HENON方程 O(2) symmetry Liapunov-Schimdt reduction Henon equation
  • 相关文献

参考文献7

  • 1[1]Choi Y S,Mckenna P J.A mountain pass method for the numerical solutions of semi-inare elliptic problems[J].Nonlinear Anal,1993,20:417-437. 被引量:1
  • 2[2]Ding Z H,Costa D,Chen G.A high-linking algorithm for sign-changing solutions of semi-linear elliptic equations[J].Nonlinear Anal,1999,38:151-172. 被引量:1
  • 3[3]Li Y,Zhou J X.A minimax method for finding multiple critical points and its application to semi-linear PDEs[J].SLAM J Sci Comput,2002,23:840-865. 被引量:1
  • 4陈传淼,谢资清著..非线性微分方程多解计算的搜索延拓法[M].北京:科学出版社,2005:204.
  • 5李昭祥,杨忠华,朱海龙,沈建.Henon方程多解计算的分歧方法[J].上海师范大学学报(自然科学版),2007,36(1):1-6. 被引量:4
  • 6杨忠华,李业忠.求解非线性椭圆型方程边值问题的分歧方法[J].上海师范大学学报(自然科学版),2005,34(2):17-20. 被引量:5
  • 7杨忠华著..非线性分歧 理论和计算[M].北京:科学出版社,2007:188.

二级参考文献8

  • 1杨忠华,李业忠.求解非线性椭圆型方程边值问题的分歧方法[J].上海师范大学学报(自然科学版),2005,34(2):17-20. 被引量:5
  • 2ZHONGHAI DING, DAVID COSTA ,GOONG CHEN. A high-linking algorithm for sign-changing solutions of semilinear elliptic equations[J]. Nonlinear Anal , 1999, 38 : 151 - 172. 被引量:1
  • 3P H RABINOWITZ. Minimax methods in critical point theory with applications to differential equations [J]. Conf Board Math Sci Reg Conf Ser Math ,1986 ,65:1 -44. 被引量:1
  • 4Y S CHOI, P J MCKENMA. Mountian pass method for the numerical solution of semilinear elliptic problems [J]. Nonlinear Anal ,1993 ,20:417 -437. 被引量:1
  • 5GOONG CHEN, JIANXIN ZHOU, WEI - MING NI. Algorithms and visualization for solutions of nonlinear elliptic equations [J]. International Journal of Bifurcation and Chaos ,2000,10 (7): 1565 - 1612. 被引量:1
  • 6CHOI Y S,MCKENNA P J.A mountain pass method for the numerical solutions of semi-linear elliptic problems[J].Nonlinear Anal,1993,20:417-437. 被引量:1
  • 7DING Z H,COSTA D,CHEN G.A high-linking algorithm for sign-changing solutions of semi-linear elliptic equations[J].Nonlinear Anal,1999,38:151-172 被引量:1
  • 8LI Y,ZHOU J X.A minimax method for finding multiple critical points and its application to semi-linear PDEs[J].SIAM J Sci Comput,2002,23:840-865. 被引量:1

共引文献6

同被引文献14

  • 1李昭祥,杨忠华,朱海龙,沈建.Henon方程多解计算的分歧方法[J].上海师范大学学报(自然科学版),2007,36(1):1-6. 被引量:4
  • 2Amann H.Supersolution,monotone iteration and stability[J].J Diff Eq ,1976,21(3):367-377. 被引量:1
  • 3Amann H,Crandall M G.On some existence theorems for semilinear elliptic equations[J].Indian Univ Math J ,1978,27(5):779-790. 被引量:1
  • 4Chang K C.Infinite Dimensional Morse Theory and Multiple Solution Problems [M].Boston:Birkhauser,1993. 被引量:1
  • 5Struwe M.Variational Methods,A Series of Modern Surveys in Math [M].Berlin:SpringerVerlag,1996. 被引量:1
  • 6Pao C V.Block monotone iterative methods for numerical solutions of nonlinear elliptic equations[J].Numer Math ,1995,72(2):239-262. 被引量:1
  • 7Deng Y ,Chen G,Ni W M ,et al.Boundary element monotone iteration scheme for semilinear elliptic partial differential equations[J].Math Comput ,1996,65(5):943-982. 被引量:1
  • 8Choi Y S,McKenna P J.A mountain pass method for the numerical solutions of semilinear elliptic problems[J].Nonlinear Anal ,1993,20(6):417-437. 被引量:1
  • 9Ding Z H ,Costa D ,Chen G.A high-linking algorithm for sign-changing solutions of semilinear elliptic equations[J].Nonlinear Anal ,1999,38(3):151-172. 被引量:1
  • 10Li Y,Zhou J X.A minimax method for finding multiple critical points and its applications to semilinear PDE[J].SIAM J Sci Comput ,2002,23(4):840-865. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部