期刊文献+

首都机场客运量预测 被引量:4

Capital Airport Passenger Throughput Prediction
下载PDF
导出
摘要 机场客流量预测对于机场未来规划和管理措施改进有重要意义。本文根据影响机场客流量的主要因素——GDP为主要条件,采用计量模型预测对首都机场未来五年客运量进行了预测分析。然后加入北京市人均可支配收入、正班客座率、飞机起降架次等因素,采用支持向量机的方法做出预测。 Passenger throughput predication is important to the airport planning and improvement of airport management.In this article,GDP which is the main influence factor is incorporated in the econometric model and grey predication of the passenger throughput in future 5 years of capital airport.Then the SVM(support vector machine) is used to make prediction considering the per capita disposable income,load factor,aircraft movement and so on.
出处 《科技和产业》 2010年第11期66-69,共4页 Science Technology and Industry
关键词 机场客流量 计量模型 支持向量机 passenger throughput econometric model grey predication SVM
  • 相关文献

参考文献5

二级参考文献17

  • 1叶舟,李忠民,李晓峰.中国民航发展与国民经济增长关系的实证分析[J].天津理工大学学报,2005,21(5):81-84. 被引量:31
  • 2[1]T. Masters ,Neural,Novel& Hybird Algorithms for Tim Series Pre-diction[M], John Wiley & Sons. Inc., 1995. 被引量:1
  • 3[2]A. D. Papalexopoulos and T. C. Hesterberg , A regression based approach to short term system load forecasting[C], Proceedings of 1989 PICA Conference , 1989:414-423, 被引量:1
  • 4[3]K. L. Ho , Y. Y. Hsu , C. F. Chen , T. E. Lee , C. C. Liang , T . S. Lai , and K. K. Chen , Short term load foreasting of Taiwan power system using a knowledge-based expert system[J], IEEE Tans.on Power Systems , 1990,5(4):1214-1221. 被引量:1
  • 5[4]A.M. Lanchlan , An improved novelty criterion for resource allocating networks[C] , IEE ,Artifical Neural Networks , Conference Publication , 1997:440:48-52 被引量:1
  • 6[5]D.Srinivasan, S.S.Tan , C.S.Chang and E.K.Chan ,Practical im-plentation of a hybrid fuzzy neural network for one-day-ahead load forecasting[J], IEE Proc.-Gener. Transm,1998.11(6):687-692. 被引量:1
  • 7[6]V.N. Vapnik ,The nature of statistical learning theory[M], New York: Springer, 1999. 被引量:1
  • 8[7]A. Smola and B. Scholkopf , A tutorial on support vector regression[M], NeuroCOLT Tech. Rep. TR 1998-030, Royal Holloway College , London , U.K., 1998. 被引量:1
  • 9[8]J.C. Platt , Fast training of support vector machines using sequential optimization , in B. Scholkopf , C. Burges , and A. Smola. Advances in kernel methods: support vector machines[M], Cambridge, MA: MIT Press, 1998. 被引量:1
  • 10[9]S.K.Shevade , S.S. Keerthi , C. Bhattacharyy and K.R.K. Murthy , Im-provements to SMO algorithm for SVM regression[J], IEEE Trans. on Neural Networks,2000,11(5): 1188-1193. 被引量:1

共引文献131

同被引文献40

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部