期刊文献+

基于等价类的Apriori优化算法 被引量:2

Apriori Optimization Algorithm Based on Equivalence Class
下载PDF
导出
摘要 介绍关联规则挖掘中的经典算法——Apriori算法的关键思想。针对传统Apriori算法效率上的不足,提出一种改进的Apriori算法——Ec-Apriori算法。该算法采用划分的方法,按照频繁1-项集支持度对数据库进行划分,在各自独立的子数据库上运用等价类的方法生成候选集,优化连接操作,同时利用位对象操作简化支持度的计算,较好地提高了算法效率。实验结果表明,改进后的算法具有较好的有效性。 This paper introduces the principle of the Apriori algorithm which is the classical algorithm of association rules mining, and proposes an improved Apriori algorithm----Equivalence class-Apriori(Ec-Apriori) algorithm which aims at the disadvantage of Apriori algorithm. It adopts a partition method and partitions the database into some independent databases according to the support of frequent 1-itemsets. It generates the candidate itemsets by adopting equivalence class in separate databases and optimizes the join operation, and simplifies the account of support by bit object, so it is more efficient. Experimental result shows that the Ec-Apriori algorithm outperforms Apriori algorithm, and gets a good practicality.
机构地区 电子工程学院
出处 《计算机工程》 CAS CSCD 北大核心 2010年第22期66-68,共3页 Computer Engineering
关键词 关联规则 APRIORI算法 数据库划分 等价类 位对象 association rules Apriori algorithm database partition equivalence class bit object
  • 相关文献

参考文献6

二级参考文献17

  • 1周焕银,张永,蔺鹏.一种不产生候选项挖掘频繁项集的新算法[J].计算机工程与应用,2004,40(15):182-185. 被引量:14
  • 2王丹,张浩,陆剑峰.针对高项频繁集的关联规则改进算法[J].计算机工程,2006,32(24):29-30. 被引量:5
  • 3Witten I H.Frank E.Data Mining:Practical Machine Learning Tools and Techniques[M].北京:机械工业出版社,2006. 被引量:1
  • 4Tan Pangning, Steinbach M, Kumar V. Introduction to DataMining[M].北京:人民邮电出版社,2006. 被引量:1
  • 5Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of Items in Large Database[C]//Proceedings of the ACM SIGMOD Conference on Management of Data. Washington, USA: ACM Press, 1993. 被引量:1
  • 6HANJ KAMBERM.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.. 被引量:45
  • 7Jiawei Han,Micheline Kamber. Data Mining:Concepts and Techniques.2001:225~244 被引量:1
  • 8Agrawal R,Imielinski T,Swami A.Mining Association Rules between Sets in Large Databases[C].In:Proceedings of the 1991 ACMSIGMOD International Conference on Management of Data:SIGMOD'93,New York:ACM Press, 1991:207~216 被引量:1
  • 9R Agrawal,R Srikant. Fast Algorithms for Mining Association Rules[J]. Business Intelligence, 1998:560~564 被引量:1
  • 10N Megiddo, R Srikant. Discovering Predictive Association Rules[C].In: Proc of the 4th Int'l Conference on Knowledge Discovery in Databases and Data Mining,New York,1998-08 被引量:1

共引文献86

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部