期刊文献+

一种各向异性GVF模型的心脏左心室MR图像分割模型 被引量:8

An Anisotropic GVF Model for the MR Image Segmentation of Left Ventricle
下载PDF
导出
摘要 为了克服传统的梯度矢量流(GVF)模型对细长拓扑结构、噪声及弱边界敏感的缺陷,提出一种基于区域信息的各向异性GVF模型.首先由模糊C均值(FCM)聚类算法得到聚类信息并将其融入到GVF模型中,以降低弱边界和噪声的影响;然后利用图像结构信息改进GVF模型,使其具有各向异性,克服了细长拓扑结构的影响;最后把得到的各向异性GVF模型融入到Snake方程中引导曲线的演化,得到目标边界.实验结果表明,该模型具有较好的分割结果. In order to overcome the shortcomings that the traditional gradient vector flow(GVF)model is sensitive to structures with slender topology,noise and weak borders,an anisotropic GVF model based on regional information is proposed in this paper.First,the clustering information calculated by the fuzzy C-means(FCM)is applied to the GVF model in order to reduce the impact of weak borders and noise.Second,the image structure information is used to improve the GVF model,which could make the GVF model anisotropic and reduce the impact of slender topology.Finally,the anisotropic GVF model is included into the Snake equation which could guide the curves evolution to get the target border.Experiments show that the new model has better performance in segmentation.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第11期1887-1891,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60973157)
关键词 图像分割 梯度矢量流模型 模糊C均值模型 各向异性 image segmentation gradient vector flow model fuzzy C-means(FCM)model anisotropic
  • 相关文献

参考文献4

二级参考文献27

  • 1张建伟,夏德深.高斯混合模型改进的活动轮廓模型MRI分割[J].计算机辅助设计与图形学学报,2005,17(12):2647-2653. 被引量:12
  • 2Chan T F, Shen J. Non-texture inpainting by curvature driven diffusion (CDD) [ J]. Journal of Visual Communication and Image Representation, 2001, 12(4): 436-449. 被引量:1
  • 3Weickert J. Coherence-enhancing diffusion of color images[ J]. Image and Vision Computing, 1999, 17(3) : 201-212. 被引量:1
  • 4Di Zenzo S. A note on the gradient of a multi-image [ J ]. Computer Vision Graphics Image Processing, 1986, 33( 1 ) :116-125. 被引量:1
  • 5Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting[ A]. In: Proceedings of International Conference on Computer Graphics and Interactive Techniques [ C] , New Orleans, Louisiana, USA, 2000: 417-424. 被引量:1
  • 6Bertalmio M. Strong-continuation, contrast-invariant inpainting with a third-order optimal PDE [ J ] . IEEE Transactions on Image Processing, 2006, 15 ( 7 ) : 1934-1938. 被引量:1
  • 7Chan T F, Shen J H. Mathematical models for local non-texture inpainting[ J ]. SIAM Journal of App lied Mathematics, 2001, 62(3) : 1019-1043. 被引量:1
  • 8Kass M, Witkin A, Terzopoulous D. Snake: Active Contour Models[J]. International Journal of Computer Vision, 1988, 2(3): 321-331. 被引量:1
  • 9Cohen L D, Cohen I. Finite-element Methods for Active Contour Models and Balloons for 2-D and 3-D Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1131-1147. 被引量:1
  • 10Xu Chenyang, Prince J L. Snakes, Shapes, and Gradient Vector Flow[J]. IEEE Trans. on Image Processing, 1998, 7(3): 359-369. 被引量:1

共引文献16

同被引文献124

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部